Semi-Supervised Deep Adversarial Forest for Cross-Environment Localization

可扩展性 计算机科学 人工智能 深层神经网络 基线(sea) 信道状态信息 深度学习 对抗制 机器学习 人工神经网络 特征(语言学) 活动识别 实时计算 无线 数据库 电信 语言学 海洋学 哲学 地质学
作者
Wei Cui,Lei Zhang,Bing Li,Zhenghua Chen,Min Wu,Xiaoli Li,Rong Yu
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:71 (9): 10215-10219 被引量:1
标识
DOI:10.1109/tvt.2022.3182039
摘要

Extracting channel state information (CSI) from WiFi signals is of proved high-effectiveness in locating human locations in a device-free manner. However, existing localization/positioning systems are mainly trained and deployed in a fixed environment, and thus they are likely to suffer from substantial performance declines when immigrating to new environments. In this paper, we address the fundamental problem of WiFi-based cross-environment indoor localization using a semi-supervised approach, in which we only have access to the annotations of the source environment while the data in the target environments are un-annotated. This problem is of high practical values in enabling a well-trained system to be scalable to new environments without tedious human annotations. To this end, a deep neural forest is introduced which unifies the ensemble learning with the representation learning functionalities from deep neural networks in an end-to-end trainable fashion. On top of that, an adversarial training strategy is further employed to learn environment-invariant feature representations for facilitating more robust localization. Extensive experiments on real-world datasets demonstrate the superiority of the proposed methods over state-of-the-art baselines. Compared with the best-performing baseline, our model excels with an average 12.7% relative improvement on all six evaluation settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jiangzhiyun完成签到,获得积分10
1秒前
WY完成签到,获得积分10
1秒前
感动傀斗完成签到,获得积分10
2秒前
光亮静槐完成签到 ,获得积分10
2秒前
wh完成签到,获得积分10
3秒前
疯狂大脑壳完成签到,获得积分10
3秒前
科隆龙完成签到,获得积分10
3秒前
得氢完成签到 ,获得积分10
4秒前
4秒前
清秀的远望完成签到,获得积分10
4秒前
sevenhill应助科研通管家采纳,获得10
4秒前
BareBear应助科研通管家采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
sevenhill应助科研通管家采纳,获得10
5秒前
霉霉完成签到 ,获得积分10
5秒前
随性的某某航完成签到,获得积分10
5秒前
天道酬勤发布了新的文献求助10
5秒前
5秒前
雪白幻巧应助科研通管家采纳,获得10
5秒前
BareBear应助科研通管家采纳,获得10
5秒前
小青椒应助科研通管家采纳,获得30
5秒前
sevenhill应助科研通管家采纳,获得10
5秒前
大个应助科研通管家采纳,获得10
5秒前
5秒前
睡到自然醒完成签到 ,获得积分10
5秒前
正己化人应助科研通管家采纳,获得10
5秒前
科目三应助科研通管家采纳,获得10
6秒前
萧萧应助科研通管家采纳,获得10
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
sevenhill应助科研通管家采纳,获得10
6秒前
在水一方应助科研通管家采纳,获得10
6秒前
香蕉觅云应助科研通管家采纳,获得10
6秒前
幽默果汁完成签到 ,获得积分10
6秒前
sevenhill应助科研通管家采纳,获得10
6秒前
sevenhill应助科研通管家采纳,获得10
6秒前
田様应助科研通管家采纳,获得20
6秒前
sevenhill应助科研通管家采纳,获得10
6秒前
龙眼完成签到,获得积分10
6秒前
文具盒完成签到,获得积分10
7秒前
俏皮沁完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482740
求助须知:如何正确求助?哪些是违规求助? 4583466
关于积分的说明 14389895
捐赠科研通 4512796
什么是DOI,文献DOI怎么找? 2473214
邀请新用户注册赠送积分活动 1459251
关于科研通互助平台的介绍 1432861