Domain Enhanced Arbitrary Image Style Transfer via Contrastive Learning

计算机科学 领域(数学分析) 人工智能 学习迁移 自然语言处理 图像(数学) 风格(视觉艺术) 计算机视觉 数学 数学分析 考古 历史
作者
Yuxin Zhang,Fan Tang,Weiming Dong,Haibin Huang,Chongyang Ma,Tong‐Yee Lee,Changsheng Xu
标识
DOI:10.1145/3528233.3530736
摘要

In this work, we tackle the challenging problem of arbitrary image style transfer using a novel style feature representation learning method. A suitable style representation, as a key component in image stylization tasks, is essential to achieve satisfactory results. Existing deep neural network based approaches achieve reasonable results with the guidance from second-order statistics such as Gram matrix of content features. However, they do not leverage sufficient style information, which results in artifacts such as local distortions and style inconsistency. To address these issues, we propose to learn style representation directly from image features instead of their second-order statistics, by analyzing the similarities and differences between multiple styles and considering the style distribution. Specifically, we present Contrastive Arbitrary Style Transfer (CAST), which is a new style representation learning and style transfer method via contrastive learning. Our framework consists of three key components, i.e., a multi-layer style projector for style code encoding, a domain enhancement module for effective learning of style distribution, and a generative network for image style transfer. We conduct qualitative and quantitative evaluations comprehensively to demonstrate that our approach achieves significantly better results compared to those obtained via state-of-the-art methods. Code and models are available at https://github.com/zyxElsa/CAST_pytorch
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冒号完成签到,获得积分10
1秒前
随聚随分完成签到 ,获得积分10
1秒前
tingtingzhang完成签到 ,获得积分10
2秒前
3秒前
闵凝竹完成签到 ,获得积分0
5秒前
sandy完成签到,获得积分20
8秒前
脑洞疼应助客厅狂欢采纳,获得10
8秒前
浅色墨水完成签到,获得积分10
8秒前
嘉嘉完成签到 ,获得积分10
10秒前
11秒前
16秒前
16秒前
搜集达人应助Kenny采纳,获得10
19秒前
20秒前
寒冷的夜蓉完成签到 ,获得积分10
20秒前
liumengyuan发布了新的文献求助10
21秒前
Cher1she发布了新的文献求助10
23秒前
子车风华发布了新的文献求助30
24秒前
25秒前
Doreen完成签到,获得积分10
26秒前
27秒前
有信心完成签到,获得积分10
27秒前
NexusExplorer应助科研通管家采纳,获得10
29秒前
上官若男应助科研通管家采纳,获得10
29秒前
SYLH应助科研通管家采纳,获得30
29秒前
烟花应助科研通管家采纳,获得10
29秒前
DC应助科研通管家采纳,获得10
30秒前
maox1aoxin应助科研通管家采纳,获得30
30秒前
脑洞疼应助科研通管家采纳,获得10
30秒前
SYLH应助科研通管家采纳,获得30
30秒前
SYLH应助科研通管家采纳,获得30
30秒前
SYLH应助科研通管家采纳,获得30
30秒前
SYLH应助科研通管家采纳,获得30
30秒前
30秒前
Hello应助孙琪采纳,获得10
30秒前
香蕉觅云应助BioCell采纳,获得10
31秒前
淡水痕发布了新的文献求助10
31秒前
32秒前
32秒前
ding应助企鹅采纳,获得10
33秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838514
求助须知:如何正确求助?哪些是违规求助? 3380889
关于积分的说明 10516101
捐赠科研通 3100459
什么是DOI,文献DOI怎么找? 1707506
邀请新用户注册赠送积分活动 821794
科研通“疑难数据库(出版商)”最低求助积分说明 772947