3D-structure-attention graph neural network for crystals and materials

可解释性 人工神经网络 光学(聚焦) 图形 计算机科学 机器学习 生物系统 理论计算机科学 人工智能 物理 生物 光学
作者
Xuanjie Lin,Hantong Jiang,Liquan Wang,Yongsheng Ren,Wenhui Ma,Shu Zhan
出处
期刊:Molecular Physics [Taylor & Francis]
卷期号:120 (11) 被引量:3
标识
DOI:10.1080/00268976.2022.2077258
摘要

Machine learning has been widely used in physics and chemistry. As a deep learning method based on graph domain analysis, graph neural networks (GNNs) have natural advantages in predicting material properties. We find that most existing models focus on the topological relationship between atoms without considering the specific positions. However, 3D-spatial distribution is the key to affecting the atomic state and interaction relationship, which has a decisive impact on the material properties. Here, we present a 3D-structure-attention graph neural network (3SAGNN) model, introducing the attention mechanism. The model focuses on the critical areas in the material 3D structure that significantly impact the prediction properties to effectively improve the accuracy of material properties prediction. We prove that the performance of 3SAGNN on a variety of datasets outperforms prior ML models, such as CGCNN. Our proposed model was tested on 36,000 inorganic materials dataset, 20,000 Pt nanocluster dataset, 18,000 porous materials, and 37,000 alloy surface reactions. The experimental results show that 3SAGNN can predict formation energies, total energies, band gaps, and surface catalytic properties more accurately and quickly than density functional theory. Finally, we improve the interpretability of the model through visualisation and show the working mechanism of the network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
水门发布了新的文献求助30
刚刚
百草27完成签到,获得积分10
1秒前
4秒前
华仔应助视野胤采纳,获得10
4秒前
登山人发布了新的文献求助10
4秒前
4秒前
FashionBoy应助山淮采纳,获得10
5秒前
彩色诗云完成签到 ,获得积分10
5秒前
杰青发布了新的文献求助10
6秒前
6秒前
思敏发布了新的文献求助10
7秒前
过时的电灯胆完成签到 ,获得积分10
7秒前
小马完成签到,获得积分20
9秒前
9秒前
今后应助杰青采纳,获得10
10秒前
视野胤完成签到,获得积分10
11秒前
内向绿竹应助lam采纳,获得10
11秒前
manan发布了新的文献求助10
11秒前
视野胤发布了新的文献求助10
13秒前
ws123发布了新的文献求助10
14秒前
大眼睛的草莓完成签到,获得积分10
15秒前
杰青完成签到,获得积分20
15秒前
我是老大应助土豆金采纳,获得10
16秒前
Orange应助思敏采纳,获得10
16秒前
独特的土豆完成签到,获得积分10
16秒前
16秒前
我是老大应助登山人采纳,获得10
17秒前
桐桐应助zuoyingying采纳,获得10
17秒前
wxq关闭了wxq文献求助
17秒前
19秒前
19秒前
20秒前
0514gr完成签到,获得积分10
20秒前
xixixi发布了新的文献求助10
22秒前
张三发布了新的文献求助10
22秒前
山淮发布了新的文献求助10
23秒前
amwlsai完成签到,获得积分10
23秒前
Bgeelyu发布了新的文献求助10
24秒前
Lp完成签到 ,获得积分10
24秒前
27秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789448
求助须知:如何正确求助?哪些是违规求助? 3334410
关于积分的说明 10270135
捐赠科研通 3050885
什么是DOI,文献DOI怎么找? 1674216
邀请新用户注册赠送积分活动 802535
科研通“疑难数据库(出版商)”最低求助积分说明 760732