Lung-Optimized Deep-Learning-Based Reconstruction for Ultralow-Dose CT

成像体模 图像质量 医学 扫描仪 迭代重建 核医学 图像噪声 噪音(视频) 放射科 人工智能 计算机科学 图像(数学)
作者
Makoto Goto,Yasunori Nagayama,Daisuke Sakabe,Takafumi Emoto,Masafumi Kidoh,Seitaro Oda,Takeshi Nakaura,Narumi Taguchi,Yoshinori Funama,Sentaro Takada,Ryutaro Uchimura,Hidetaka Hayashi,Masahiro Hatemura,Koichi Kawanaka,Toshinori Hirai
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:30 (3): 431-440 被引量:12
标识
DOI:10.1016/j.acra.2022.04.025
摘要

To evaluate the image properties of lung-specialized deep-learning-based reconstruction (DLR) and its applicability in ultralow-dose CT (ULDCT) relative to hybrid- (HIR) and model-based iterative-reconstructions (MBIR).An anthropomorphic chest phantom was scanned on a 320-row scanner at 50-mA (low-dose-CT 1 [LDCT-1]), 25-mA (LDCT-2), and 10-mA (ULDCT). LDCT were reconstructed with HIR; ULDCT images were reconstructed with HIR (ULDCT-HIR), MBIR (ULDCT-MBIR), and DLR (ULDCT-DLR). Image noise and contrast-to-noise ratio (CNR) were quantified. With the LDCT images as reference standards, ULDCT image qualities were subjectively scored on a 5-point scale (1 = substantially inferior to LDCT-2, 3 = comparable to LDCT-2, 5 = comparable to LDCT-1). For task-based image quality analyses, a physical evaluation phantom was scanned at seven doses to achieve the noise levels equivalent to chest phantom; noise power spectrum (NPS) and task-based transfer function (TTF) were evaluated. Clinical ULDCT (10-mA) images obtained in 14 nonobese patients were reconstructed with HIR, MBIR, and DLR; the subjective acceptability was ranked.Image noise was lower and CNR was higher in ULDCT-DLR and ULDCT-MBIR than in LDCT-1, LDCT-2, and ULDCT-HIR (p < 0.01). The overall quality of ULDCT-DLR was higher than of ULDCT-HIR and ULDCT-MBIR (p < 0.01), and almost comparable with that of LDCT-2 (mean score: 3.4 ± 0.5). DLR yielded the highest NPS peak frequency and TTF50% for high-contrast object. In clinical ULDCT images, the subjective acceptability of DLR was higher than of HIR and MBIR (p < 0.01).DLR optimized for lung CT improves image quality and provides possible greater dose optimization opportunity than HIR and MBIR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
希望天下0贩的0应助kingsman采纳,获得10
2秒前
2秒前
耐斯糖完成签到 ,获得积分10
2秒前
The one完成签到,获得积分10
3秒前
liffchao完成签到,获得积分10
3秒前
4秒前
5秒前
5秒前
7秒前
8秒前
鲁迪发布了新的文献求助10
8秒前
9秒前
Jimmy发布了新的文献求助10
10秒前
开朗的抽屉完成签到 ,获得积分10
10秒前
12秒前
年轻的千筹完成签到,获得积分10
13秒前
司空蓝完成签到,获得积分10
14秒前
14秒前
Jieun完成签到,获得积分10
16秒前
sh完成签到,获得积分10
16秒前
16秒前
poison完成签到 ,获得积分10
19秒前
19秒前
内向映天发布了新的文献求助10
20秒前
黎洛洛发布了新的文献求助10
21秒前
温婉的香水完成签到 ,获得积分10
21秒前
JamesPei应助excellent采纳,获得10
23秒前
25秒前
等待听安完成签到 ,获得积分10
27秒前
27秒前
思源应助12355采纳,获得10
28秒前
29秒前
米米米完成签到,获得积分10
29秒前
29秒前
30秒前
bkagyin应助cherrychou采纳,获得10
30秒前
31秒前
啊啊啊发布了新的文献求助10
31秒前
32秒前
33秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783306
求助须知:如何正确求助?哪些是违规求助? 3328584
关于积分的说明 10237387
捐赠科研通 3043770
什么是DOI,文献DOI怎么找? 1670643
邀请新用户注册赠送积分活动 799811
科研通“疑难数据库(出版商)”最低求助积分说明 759130