Molecular dynamics simulation and machine learning of mechanical response in non-equiatomic FeCrNiCoMn high-entropy alloy

材料科学 高熵合金 合金 人工神经网络 极限抗拉强度 机器学习 分子动力学 人工智能 支持向量机 形状记忆合金 计算机科学 复合材料 计算化学 化学
作者
Liang Zhang,Kun Qian,Jun Huang,Mao Liu,Yasushi Shibuta
出处
期刊:Journal of materials research and technology [Elsevier BV]
卷期号:13: 2043-2054 被引量:65
标识
DOI:10.1016/j.jmrt.2021.06.021
摘要

High-entropy alloys (HEAs) have attracted a wide range of academic interest for their promising properties as structural materials, among which the equiatomic FeCrNiCoMn HEAs have been reported to possess a series of superior properties. However, one may have to change the alloy composition from the equiatomic composition to improve a specific material property. In this study, molecular dynamics simulation combined with machine learning methods was used to study the mechanical properties of non-equiatomic FeCrNiCoMn HEAs. A database describing the relationship between materials composition and mechanical properties was established based on a tensile test of 300 HEA single-crystal samples by MD simulation. We investigated and compared three ML models for the learning task of yield stress, including support vector machine (SVM), kernel-based extreme learning machine (KELM), and deep neural network (DNN). It was found that the DNN model outperformed others for the binary classification of yield stress. The elemental composition strategy was used to guide the design of polycrystal FeCrNiCoMn samples, and the accuracy of the DNN model was further verified by the polycrystal samples. We show in this contribution that computational study combined with machine learning method can provide instructive guidance for the design of high-strength HEA and accelerate the development of new alloy materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文承龙发布了新的文献求助10
1秒前
Amon完成签到,获得积分10
2秒前
1776734134完成签到 ,获得积分10
2秒前
2秒前
123发布了新的文献求助10
3秒前
3秒前
小七发布了新的文献求助10
3秒前
KAKAZhang发布了新的文献求助10
4秒前
孙燕应助石幼蓉采纳,获得10
4秒前
烟花应助石幼蓉采纳,获得10
4秒前
淡淡红茶发布了新的文献求助10
4秒前
淡淡红茶发布了新的文献求助10
4秒前
淡淡红茶发布了新的文献求助10
4秒前
淡淡红茶发布了新的文献求助20
5秒前
酒酒8完成签到 ,获得积分10
5秒前
淡淡红茶发布了新的文献求助10
5秒前
5秒前
淡淡红茶发布了新的文献求助10
6秒前
6秒前
7秒前
bkagyin应助无私的宛秋采纳,获得10
7秒前
淡淡红茶发布了新的文献求助10
9秒前
淡淡红茶发布了新的文献求助10
9秒前
淡淡红茶发布了新的文献求助10
9秒前
淡淡红茶发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
冰魂应助落骛采纳,获得10
10秒前
12秒前
13秒前
酷波er应助123采纳,获得10
15秒前
17秒前
18秒前
阝火火完成签到,获得积分10
19秒前
22秒前
22秒前
22秒前
23秒前
23秒前
wanci应助Lartyrs采纳,获得10
24秒前
24秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3884888
求助须知:如何正确求助?哪些是违规求助? 3427080
关于积分的说明 10753147
捐赠科研通 3151993
什么是DOI,文献DOI怎么找? 1739988
邀请新用户注册赠送积分活动 839903
科研通“疑难数据库(出版商)”最低求助积分说明 785087