An Ensemble Surrogate-Based Framework for Expensive Multiobjective Evolutionary Optimization

替代模型 进化算法 多目标优化 计算机科学 数学优化 分类 差异进化 遗传算法 最优化问题 机器学习 进化计算 人工智能 数学 算法
作者
Qiuzhen Lin,Xunfeng Wu,Lijia Ma,Jianqiang Li,Maoguo Gong,Carlos A. Coello Coello
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:26 (4): 631-645 被引量:55
标识
DOI:10.1109/tevc.2021.3103936
摘要

Surrogate-assisted evolutionary algorithms (SAEAs) have become very popular for tackling computationally expensive multiobjective optimization problems (EMOPs), as the surrogate models in SAEAs can approximate EMOPs well, thereby reducing the time cost of the optimization process. However, with the increased number of decision variables in EMOPs, the prediction accuracy of surrogate models will deteriorate, which inevitably worsens the performance of SAEAs. To deal with this issue, this article suggests an ensemble surrogate-based framework for tackling EMOPs. In this framework, a global surrogate model is trained under the entire search space to explore the global area, while a number of surrogate submodels are trained under different search subspaces to exploit the subarea, so as to enhance the prediction accuracy and reliability. Moreover, a new infill sampling criterion is designed based on a set of reference vectors to select promising samples for training the models. To validate the generality and effectiveness of our framework, three state-of-the-art evolutionary algorithms [nondominated sorting genetic algorithm III (NSGA-III), multiobjective evolutionary algorithm based on decomposition with differential evolution (MOEA/D-DE) and reference vector-guided evolutionary algorithm (RVEA)] are embedded, which significantly improve their performance for solving most of the test EMOPs adopted in this article. When compared to some competitive SAEAs for solving EMOPs with up to 30 decision variables, the experimental results also validate the advantages of our approach in most cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhouyupeng完成签到,获得积分10
刚刚
1秒前
简乐发布了新的文献求助10
2秒前
搜集达人应助陈洋采纳,获得10
2秒前
馒头完成签到 ,获得积分10
3秒前
超神完成签到,获得积分0
3秒前
爆米花应助文静戎采纳,获得10
3秒前
mashibeo完成签到,获得积分10
4秒前
4秒前
Akim应助Jloven采纳,获得150
5秒前
儒雅以云完成签到,获得积分10
5秒前
zmk发布了新的文献求助30
5秒前
李治稳完成签到,获得积分10
6秒前
mia发布了新的文献求助10
7秒前
7秒前
9秒前
bkagyin应助醉熏的沛凝采纳,获得30
10秒前
CodeCraft应助AteeqBaloch采纳,获得10
10秒前
ANDRT发布了新的文献求助10
10秒前
shuiwuming发布了新的文献求助10
11秒前
健忘的曼卉完成签到,获得积分10
11秒前
12秒前
充电宝应助plddd采纳,获得30
12秒前
13秒前
怕黑钢笔完成签到 ,获得积分10
13秒前
14秒前
小花排草应助儒雅沛凝采纳,获得15
15秒前
15秒前
爱吃西瓜完成签到,获得积分10
16秒前
文静戎发布了新的文献求助10
16秒前
汉堡包应助激动的一手采纳,获得10
17秒前
17秒前
18秒前
lllxxx举报激昂的信封求助涉嫌违规
19秒前
爆米花应助cxp采纳,获得10
20秒前
sarah完成签到,获得积分10
20秒前
阔达的秀发完成签到,获得积分10
21秒前
科研通AI5应助runtang采纳,获得10
21秒前
George发布了新的文献求助10
22秒前
22秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 820
The Geometry of the Moiré Effect in One, Two, and Three Dimensions 500
含极性四面体硫代硫酸基团的非线性光学晶体的探索 500
Византийско-аланские отно- шения (VI–XII вв.) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4182436
求助须知:如何正确求助?哪些是违规求助? 3718543
关于积分的说明 11721092
捐赠科研通 3398082
什么是DOI,文献DOI怎么找? 1864403
邀请新用户注册赠送积分活动 922214
科研通“疑难数据库(出版商)”最低求助积分说明 833888