An Ensemble Surrogate-Based Framework for Expensive Multiobjective Evolutionary Optimization

替代模型 进化算法 多目标优化 计算机科学 数学优化 分类 差异进化 遗传算法 最优化问题 机器学习 进化计算 人工智能 数学 算法
作者
Qiuzhen Lin,Xunfeng Wu,Lijia Ma,Jianqiang Li,Maoguo Gong,Carlos A. Coello Coello
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:26 (4): 631-645 被引量:9
标识
DOI:10.1109/tevc.2021.3103936
摘要

Surrogate-assisted evolutionary algorithms (SAEAs) have become very popular for tackling computationally expensive multiobjective optimization problems (EMOPs), as the surrogate models in SAEAs can approximate EMOPs well, thereby reducing the time cost of the optimization process. However, with the increased number of decision variables in EMOPs, the prediction accuracy of surrogate models will deteriorate, which inevitably worsens the performance of SAEAs. To deal with this issue, this article suggests an ensemble surrogate-based framework for tackling EMOPs. In this framework, a global surrogate model is trained under the entire search space to explore the global area, while a number of surrogate submodels are trained under different search subspaces to exploit the subarea, so as to enhance the prediction accuracy and reliability. Moreover, a new infill sampling criterion is designed based on a set of reference vectors to select promising samples for training the models. To validate the generality and effectiveness of our framework, three state-of-the-art evolutionary algorithms [nondominated sorting genetic algorithm III (NSGA-III), multiobjective evolutionary algorithm based on decomposition with differential evolution (MOEA/D-DE) and reference vector-guided evolutionary algorithm (RVEA)] are embedded, which significantly improve their performance for solving most of the test EMOPs adopted in this article. When compared to some competitive SAEAs for solving EMOPs with up to 30 decision variables, the experimental results also validate the advantages of our approach in most cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
田様应助Jojin采纳,获得10
1秒前
深情安青应助香菜大王采纳,获得10
1秒前
1秒前
可爱的函函应助刘勇采纳,获得10
2秒前
2秒前
顾矜应助BLAZe采纳,获得10
2秒前
15327432191完成签到 ,获得积分10
2秒前
3秒前
邬幼珊发布了新的文献求助30
3秒前
Vincey完成签到,获得积分10
3秒前
鹏程万里完成签到,获得积分20
5秒前
6秒前
聪慧芷巧发布了新的文献求助10
6秒前
小牧鱼完成签到,获得积分10
6秒前
爆米花应助洗洗采纳,获得30
7秒前
日青完成签到,获得积分10
7秒前
8秒前
小乔完成签到,获得积分10
9秒前
Jasper应助creepppp采纳,获得10
10秒前
11秒前
LHJ关注了科研通微信公众号
11秒前
鹏程万里发布了新的文献求助20
12秒前
我有一只小毛驴从来也不骑完成签到,获得积分10
12秒前
12秒前
12秒前
kk不k完成签到,获得积分10
13秒前
聪慧芷巧发布了新的文献求助10
13秒前
咚咚完成签到,获得积分10
17秒前
呢喃完成签到 ,获得积分10
17秒前
18秒前
尹沐完成签到 ,获得积分10
19秒前
聪慧芷巧发布了新的文献求助10
19秒前
小蘑菇应助bruna采纳,获得10
20秒前
20秒前
20秒前
活泼平凡发布了新的文献求助10
22秒前
科研通AI2S应助Jorna采纳,获得10
22秒前
SYT完成签到,获得积分10
22秒前
LHJ发布了新的文献求助10
24秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Assessing organizational change : A guide to methods, measures, and practices 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3903533
求助须知:如何正确求助?哪些是违规求助? 3448280
关于积分的说明 10852673
捐赠科研通 3173796
什么是DOI,文献DOI怎么找? 1753545
邀请新用户注册赠送积分活动 847767
科研通“疑难数据库(出版商)”最低求助积分说明 790458