An Ensemble Surrogate-Based Framework for Expensive Multiobjective Evolutionary Optimization

替代模型 进化算法 多目标优化 计算机科学 数学优化 分类 差异进化 遗传算法 最优化问题 机器学习 进化计算 人工智能 数学 算法
作者
Qiuzhen Lin,Xunfeng Wu,Lijia Ma,Jianqiang Li,Maoguo Gong,Carlos A. Coello Coello
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:26 (4): 631-645 被引量:60
标识
DOI:10.1109/tevc.2021.3103936
摘要

Surrogate-assisted evolutionary algorithms (SAEAs) have become very popular for tackling computationally expensive multiobjective optimization problems (EMOPs), as the surrogate models in SAEAs can approximate EMOPs well, thereby reducing the time cost of the optimization process. However, with the increased number of decision variables in EMOPs, the prediction accuracy of surrogate models will deteriorate, which inevitably worsens the performance of SAEAs. To deal with this issue, this article suggests an ensemble surrogate-based framework for tackling EMOPs. In this framework, a global surrogate model is trained under the entire search space to explore the global area, while a number of surrogate submodels are trained under different search subspaces to exploit the subarea, so as to enhance the prediction accuracy and reliability. Moreover, a new infill sampling criterion is designed based on a set of reference vectors to select promising samples for training the models. To validate the generality and effectiveness of our framework, three state-of-the-art evolutionary algorithms [nondominated sorting genetic algorithm III (NSGA-III), multiobjective evolutionary algorithm based on decomposition with differential evolution (MOEA/D-DE) and reference vector-guided evolutionary algorithm (RVEA)] are embedded, which significantly improve their performance for solving most of the test EMOPs adopted in this article. When compared to some competitive SAEAs for solving EMOPs with up to 30 decision variables, the experimental results also validate the advantages of our approach in most cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
净心完成签到 ,获得积分10
2秒前
2秒前
4秒前
开心的眼睛完成签到,获得积分10
4秒前
旅人完成签到 ,获得积分10
7秒前
7秒前
ad钙发布了新的文献求助10
8秒前
大模型应助踏实的老四采纳,获得10
10秒前
10秒前
丘比特应助lin采纳,获得10
11秒前
君衡完成签到 ,获得积分10
12秒前
CodeCraft应助顶级科学家采纳,获得10
12秒前
zh发布了新的文献求助10
12秒前
yuanquaner完成签到,获得积分10
12秒前
oo完成签到,获得积分10
14秒前
14秒前
14秒前
14秒前
俞骁俞骁发布了新的文献求助10
16秒前
Twonej举报Mol求助涉嫌违规
16秒前
科研通AI6.1应助贺烨霖采纳,获得10
16秒前
16秒前
David应助乔木木采纳,获得10
16秒前
Wenshan发布了新的文献求助10
18秒前
张可欣发布了新的文献求助10
19秒前
贾小云完成签到 ,获得积分10
19秒前
19秒前
量子星尘发布了新的文献求助10
20秒前
猕猴桃完成签到 ,获得积分10
20秒前
笑对人生发布了新的文献求助10
20秒前
充电宝应助陈chen采纳,获得10
23秒前
24秒前
李爱国应助Wenshan采纳,获得10
24秒前
Wjh123456完成签到,获得积分10
24秒前
Ava应助oo采纳,获得10
24秒前
25秒前
26秒前
yxy完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5737113
求助须知:如何正确求助?哪些是违规求助? 5371030
关于积分的说明 15334920
捐赠科研通 4880851
什么是DOI,文献DOI怎么找? 2623064
邀请新用户注册赠送积分活动 1571894
关于科研通互助平台的介绍 1528752