AlphaDesign: A de novo protein design framework based on AlphaFold

蛋白质设计 计算生物学 蛋白质结构 蛋白质折叠 分子动力学 折叠(DSP实现) 蛋白质组 蛋白质工程 结构生物信息学 蛋白质结构预测 生物系统 计算机科学 化学 生物 生物信息学 计算化学 生物化学 工程类 电气工程
作者
Michael Jendrusch,Jan O. Korbel,S. Kashif Sadiq
标识
DOI:10.1101/2021.10.11.463937
摘要

De novo protein design is a longstanding fundamental goal of synthetic biology, but has been hindered by the difficulty in reliable prediction of accurate high-resolution protein structures from sequence. Recent advances in the accuracy of protein structure prediction methods, such as AlphaFold (AF), have facilitated proteome scale structural predictions of monomeric proteins. Here we develop AlphaDesign, a computational framework for de novo protein design that embeds AF as an oracle within an optimisable design process. Our framework enables rapid prediction of completely novel protein monomers starting from random sequences. These are shown to adopt a diverse array of folds within the known protein space. A recent and unexpected utility of AF to predict the structure of protein complexes, further allows our framework to design higher-order complexes. Subsequently a range of predictions are made for monomers, homodimers, heterodimers as well as higher-order homo-oligomers - trimers to hexamers. Our analyses also show potential for designing proteins that bind to a pre-specified target protein. Structural integrity of predicted structures is validated and confirmed by standard ab initio folding and structural analysis methods as well as more extensively by performing rigorous all-atom molecular dynamics simulations and analysing the corresponding structural flexibility, intramonomer and interfacial amino-acid contacts. These analyses demonstrate widespread maintenance of structural integrity and suggests that our framework allows for fairly accurate protein design. Strikingly, our approach also reveals the capacity of AF to predict proteins that switch conformation upon complex formation, such as involving switches from α -helices to β -sheets during amyloid filament formation. Correspondingly, when integrated into our design framework, our approach reveals de novo design of a subset of proteins that switch conformation between monomeric and oligomeric state.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
4秒前
4秒前
Pepsi发布了新的文献求助10
5秒前
6秒前
汤唯发布了新的文献求助10
6秒前
kiki发布了新的文献求助10
7秒前
D1fficulty完成签到,获得积分10
7秒前
汉堡包应助御坂延珠采纳,获得10
7秒前
10秒前
strickland完成签到,获得积分10
12秒前
36524完成签到,获得积分10
13秒前
13秒前
INCH完成签到 ,获得积分10
14秒前
15秒前
平淡的天宇完成签到,获得积分10
15秒前
15秒前
朱笑白完成签到 ,获得积分10
15秒前
hehe完成签到,获得积分10
16秒前
科研通AI5应助cnspower采纳,获得30
16秒前
深情安青应助汤唯采纳,获得10
19秒前
11冰之泪完成签到 ,获得积分10
19秒前
都是发布了新的文献求助10
19秒前
YQQ发布了新的文献求助10
20秒前
迷途羔羊完成签到 ,获得积分10
25秒前
25秒前
yuki完成签到,获得积分10
25秒前
yinshan完成签到 ,获得积分10
26秒前
Ava应助YQQ采纳,获得10
28秒前
完美世界应助素月分辉采纳,获得10
31秒前
雪山飞龙发布了新的文献求助10
31秒前
初余发布了新的文献求助10
32秒前
科研通AI2S应助害羞凤灵采纳,获得10
34秒前
溏心儿完成签到,获得积分20
34秒前
d00007发布了新的文献求助10
35秒前
摆烂fish完成签到,获得积分10
35秒前
张一完成签到,获得积分20
36秒前
38秒前
Clarence完成签到,获得积分10
42秒前
科研通AI5应助shenglll采纳,获得30
43秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781487
求助须知:如何正确求助?哪些是违规求助? 3327136
关于积分的说明 10229537
捐赠科研通 3041969
什么是DOI,文献DOI怎么找? 1669742
邀请新用户注册赠送积分活动 799258
科研通“疑难数据库(出版商)”最低求助积分说明 758757