Data driven model for heat load prediction in buildings connected to District Heating by using smart heat meters

聚类分析 楼宇自动化 需求响应 计算机科学 工程类 环境科学 电气工程 物理 机器学习 热力学
作者
Mikel Lumbreras,Roberto Garay-Martinez,Beñat Arregi,Koldobika Martín-Escudero,Gonzalo Diarce,Margus Raud,Indrek Hagu
出处
期刊:Energy [Elsevier]
卷期号:239: 122318-122318 被引量:62
标识
DOI:10.1016/j.energy.2021.122318
摘要

An accurate characterization and prediction of heat loads in buildings connected to a District Heating (DH) network is crucial for the effective operation of these systems. The high variability of the heat production process of DH networks with low supply temperatures and derived from the incorporation of different heat sources increases the need for heat demand prediction models. This paper presents a novel data-driven model for the characterization and prediction of heating demand in buildings connected to a DH network. \nThis model is built on the so-called Q-algorithm and fed with real data from 42 smart energy meters located in 42 buildings connected to the DH in Tartu (Estonia). These meters deliver heat consumption data with a 1-h frequency. Heat load profiles are analysed, and a model based on supervised clustering methods in combination with multiple variable regression is proposed. The model makes use of four climatic variables, including outdoor ambient temperature, global solar radiation and wind speed and direction, combined with time factors and data from smart meters. The model is designed for deployment over large sets of the building stock, and thus aims to forecast heat load regardless of the construction characteristics or final use of the building. The low computational cost required by this algorithm enables its integration into machines with no special requirements due to the equations governing the model. \nThe data-driven model is evaluated both statistically and from an engineering or energetic point of view. R2 values from 0.70 to 0.99 are obtained for daily data resolution and R2 values up to 0.95 for hourly data resolution. Hourly results are very promising for more than 90% of the buildings under study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9377应助hazhuxixi采纳,获得10
1秒前
wanci应助yizhicc采纳,获得10
3秒前
五块墓碑完成签到,获得积分10
5秒前
6秒前
8秒前
can完成签到,获得积分10
9秒前
10秒前
玲玲玲发布了新的文献求助10
13秒前
小xy完成签到,获得积分10
13秒前
13秒前
左耳钉应助欢喜的依风采纳,获得10
13秒前
Jonathan发布了新的文献求助10
13秒前
愿绘重来一世完成签到,获得积分20
14秒前
沉默豆芽发布了新的文献求助10
14秒前
FashionBoy应助能干橘子采纳,获得10
15秒前
满意又蓝完成签到,获得积分10
16秒前
MAIA发布了新的文献求助10
16秒前
浩然完成签到,获得积分10
16秒前
CC发布了新的文献求助10
16秒前
yx_cheng发布了新的文献求助10
16秒前
苹果派完成签到 ,获得积分10
18秒前
22秒前
23秒前
13完成签到,获得积分10
24秒前
24秒前
25秒前
彭于晏应助vkey采纳,获得10
25秒前
ESTHERDY完成签到 ,获得积分10
26秒前
量子星尘发布了新的文献求助10
27秒前
28秒前
汉堡包应助任伟超采纳,获得10
28秒前
anna1992发布了新的文献求助10
29秒前
arizaki7完成签到,获得积分10
30秒前
30秒前
31秒前
辣子鸡发布了新的文献求助10
31秒前
32秒前
Ava应助寻光人采纳,获得10
32秒前
33秒前
清风明月发布了新的文献求助10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425506
求助须知:如何正确求助?哪些是违规求助? 4539540
关于积分的说明 14168368
捐赠科研通 4457101
什么是DOI,文献DOI怎么找? 2444423
邀请新用户注册赠送积分活动 1435344
关于科研通互助平台的介绍 1412740