A feature learning-based method for impact load reconstruction and localization of the plate-rib assembled structure

深度学习 卷积神经网络 循环神经网络 计算机科学 特征学习 人工智能 特征工程 编码器 非线性系统 特征(语言学) 模式识别(心理学) 人工神经网络 算法 量子力学 操作系统 物理 哲学 语言学
作者
Tao Chen,Liang Guo,Andongzhe Duan,Hongli Gao,Tao Feng,Yichen He
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
卷期号:21 (4): 1590-1607 被引量:11
标识
DOI:10.1177/14759217211038065
摘要

Impact load is the load that machines frequently experienced in engineering applications. Its time-history reconstruction and localization are crucial for structural health monitoring and reliability analysis. However, when identifying random impact loads, conventional inversion methods usually do not perform well because of complex formula derivation, infeasibility of nonlinear structure, and ill-posed problem. Deep learning methods have great ability of feature learning and nonlinear representation as well as comprehensive regularization mechanism. Therefore, a new feature learning-based method is proposed to conduct impact load reconstruction and localization. The proposed method mainly includes two parts. The first part is designed to reconstruct impact load, named convolutional-recurrent encoder–decoder neural network (ED-CRNN). The other part is constructed to localize impact load, called deep convolutional-recurrent neural network (DCRNN). The ED-CRNN utilizes the one-dimensional (1-D) convolutional encoder–decoder to obtain low-dimension feature representations of input signals. Two long short-term memory (LSTM) layers and a bidirectional LSTM (BiLSTM) layer are uniformly distributed in this network to learn the relationship between input features and the output load in time steps. The DCRNN is constructed mainly by two 1-D convolutional neural network (CNN) layers and two BiLSTM layers to learn high-hidden-level spatial as well as temporal features. The fully connected layers are placed at the end to localize an impact load. The effectiveness of the proposed method was demonstrated by two numerical studies and two experiments. The results reveal that the proposed method has the ability to accurately and quickly reconstruct and localize the impact load of complex assembled structure. Furthermore, the performance of the DCRNN is related to the number of sensors and the architecture of the network. Meanwhile, the strategy of alternating layout is proposed to reduce the number of training locations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
啥东西完成签到,获得积分10
1秒前
1秒前
2秒前
3秒前
3秒前
赤练仙子完成签到,获得积分10
3秒前
3秒前
QOP发布了新的文献求助30
3秒前
顾己发布了新的文献求助20
3秒前
ekko发布了新的文献求助10
3秒前
小王同学发布了新的文献求助10
4秒前
科研助手6应助快乐难敌采纳,获得20
5秒前
5秒前
yunxiao完成签到 ,获得积分10
6秒前
斯文败类应助Roy采纳,获得20
6秒前
过目不王完成签到,获得积分20
6秒前
6秒前
小林完成签到,获得积分10
6秒前
杰_骜不驯发布了新的文献求助10
6秒前
7秒前
橙子完成签到,获得积分10
7秒前
Summer完成签到,获得积分10
7秒前
凉笙墨染发布了新的文献求助10
8秒前
小马甲应助巫马采纳,获得10
8秒前
Orange应助ALLUDO采纳,获得10
8秒前
8秒前
soso1010发布了新的文献求助10
8秒前
cc应助瘦瘦寻菡采纳,获得10
8秒前
FashionBoy应助乐观寻绿采纳,获得10
9秒前
Ava应助佳佳采纳,获得10
9秒前
昵昵昵昵呀完成签到,获得积分10
9秒前
9秒前
科研通AI5应助青黛采纳,获得10
10秒前
10秒前
10秒前
千霖完成签到,获得积分20
10秒前
琪凯定理发布了新的文献求助10
11秒前
兰蕙完成签到,获得积分10
11秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816802
求助须知:如何正确求助?哪些是违规求助? 3360159
关于积分的说明 10407045
捐赠科研通 3078172
什么是DOI,文献DOI怎么找? 1690613
邀请新用户注册赠送积分活动 813964
科研通“疑难数据库(出版商)”最低求助积分说明 767910