亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep learning to predict subtypes of poorly differentiated lung cancer from biopsy whole slide images.

医学 肺癌 人工智能 不确定 卷积神经网络 试验装置 病理 H&E染色 癌症 腺癌 接收机工作特性 深度学习 活检 放射科 内科学 免疫组织化学 计算机科学 纯数学 数学
作者
Gouji Toyokawa,Fahdi Kanavati,Seiya Momosaki,Kengo Tateishi,Hiroaki Takeoka,Masaki Okamoto,Koji Yamazaki,Sadanori Takeo,Osamu Iizuka,Masayuki Tsuneki
出处
期刊:Journal of Clinical Oncology [American Society of Clinical Oncology]
卷期号:39 (15_suppl): 8536-8536
标识
DOI:10.1200/jco.2021.39.15_suppl.8536
摘要

8536 Background: Lung cancer is the leading cause of cancer-related death in many countries, and its prognosis remains unsatisfactory. Since treatment approaches differ substantially based on the subtype, such as adenocarcinoma (ADC), squamous cell carcinoma (SCC) and small cell lung cancer (SCLC), an accurate histopathological diagnosis is of great importance. However, if the specimen is solely composed of poorly differentiated cancer cells, distinguishing between histological subtypes can be difficult. The present study developed a deep learning model to classify lung cancer subtypes from whole slide images (WSIs) of transbronchial lung biopsy (TBLB) specimens, in particular with the aim of using this model to evaluate a challenging test set of indeterminate cases. Methods: Our deep learning model consisted of two separately trained components: a convolutional neural network tile classifier and a recurrent neural network tile aggregator for the WSI diagnosis. We used a training set consisting of 638 WSIs of TBLB specimens to train a deep learning model to classify lung cancer subtypes (ADC, SCC and SCLC) and non-neoplastic lesions. The training set consisted of 593 WSIs for which the diagnosis had been determined by pathologists based on the visual inspection of Hematoxylin-Eosin (HE) slides and of 45 WSIs of indeterminate cases (64 ADCs and 19 SCCs). We then evaluated the models using five independent test sets. For each test set, we computed the receiver operator curve (ROC) area under the curve (AUC). Results: We applied the model to an indeterminate test set of WSIs obtained from TBLB specimens that pathologists had not been able to conclusively diagnose by examining the HE-stained specimens alone. Overall, the model achieved ROC AUCs of 0.993 (confidence interval [CI] 0.971-1.0) and 0.996 (0.981-1.0) for ADC and SCC, respectively. We further evaluated the model using five independent test sets consisting of both TBLB and surgically resected lung specimens (combined total of 2490 WSIs) and obtained highly promising results with ROC AUCs ranging from 0.94 to 0.99. Conclusions: In this study, we demonstrated that a deep learning model could be trained to predict lung cancer subtypes in indeterminate TBLB specimens. The extremely promising results obtained show that if deployed in clinical practice, a deep learning model that is capable of aiding pathologists in diagnosing indeterminate cases would be extremely beneficial as it would allow a diagnosis to be obtained sooner and reduce costs that would result from further investigations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
liubaogang发布了新的文献求助10
5秒前
曾业辉发布了新的文献求助10
8秒前
我爱陶子完成签到 ,获得积分10
8秒前
NexusExplorer应助申腾达采纳,获得10
9秒前
18秒前
kklkimo发布了新的文献求助30
23秒前
Lucas应助科研通管家采纳,获得10
26秒前
26秒前
丘比特应助科研通管家采纳,获得10
26秒前
Lucas应助科研通管家采纳,获得10
26秒前
26秒前
丘比特应助科研通管家采纳,获得10
26秒前
26秒前
香蕉觅云应助科研通管家采纳,获得10
26秒前
量子星尘发布了新的文献求助10
29秒前
36秒前
Owen应助曾业辉采纳,获得10
37秒前
orixero应助啵子采纳,获得10
42秒前
liubaogang完成签到,获得积分20
43秒前
隐形曼青应助sugkook采纳,获得10
52秒前
1分钟前
sugkook发布了新的文献求助10
1分钟前
爆米花应助liubaogang采纳,获得10
1分钟前
1分钟前
liubaogang发布了新的文献求助10
1分钟前
rebeycca发布了新的文献求助80
1分钟前
搞怪的又蓝完成签到,获得积分10
1分钟前
1分钟前
Mercy发布了新的文献求助10
1分钟前
rebeycca完成签到,获得积分10
2分钟前
2分钟前
申腾达发布了新的文献求助10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
Jasper应助科研通管家采纳,获得10
2分钟前
华仔应助科研通管家采纳,获得10
2分钟前
情怀应助Mercy采纳,获得10
2分钟前
lzmcsp完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5780317
求助须知:如何正确求助?哪些是违规求助? 5654644
关于积分的说明 15453043
捐赠科研通 4911039
什么是DOI,文献DOI怎么找? 2643222
邀请新用户注册赠送积分活动 1590873
关于科研通互助平台的介绍 1545379