RNA甲基化
基因敲除
HMGB1
癌症研究
下调和上调
分子生物学
非翻译区
免疫沉淀
干扰素
生物
炎症
甲基化
信使核糖核酸
免疫学
细胞生物学
细胞凋亡
基因
甲基转移酶
生物化学
抗体
作者
Genwen Chen,Qianqian Zhao,Baoying Yuan,Biao Wang,Yang Zhang,Zongjuan Li,Shisuo Du,Zhao‐Chong Zeng
标识
DOI:10.1016/j.ijrobp.2021.05.115
摘要
Radiation therapy, which is vital for the treatment of primary liver cancer, comes with unavoidable liver injury, which limits its implementation. N6-methyladenosine (m6A) methylation is involved in many molecular functions. However, its role in radiation-induced liver diseases (RILD) remains unknown. Herein, we investigate the role of m6A methylation in RILD.Methylated RNA-immunoprecipitation sequencing and RNA transcriptome sequencing were used to reveal the methylation pattern of human hepatic stellate cells (HSCs) exposed to irradiation. C3H/HeN mice and stimulator of interferon genes (STING)-deficient mice underwent x-ray irradiation of 24 Gy in 3 fractions. The m6A methylation of the high-mobility group box 1 (HMGB1) transcript was validated using methylated RNA immunoprecipitation, RNA immunoprecipitation, luciferase assays, and a messenger RNA decay assay.Human hepatic stellate cells showed significant differences in methylation patterns after 8 Gy of x-ray irradiation. Irradiation recruited AlkB homolog 5 (ALKBH5) to demethylate m6A residues in the 3' untranslated region of HMGB1, which resulted in the activation of STING-interferon regulatory factor 3 signaling. Changes in the transcription of the 3' untranslated region of HMGB1 occurred after the knockdown of ALKBH5, which were eliminated after m6A residue mutation. Strikingly, ALKBH5 deficiency or HMGB1 silencing both attenuated type I interferon production and decreased hepatocyte apoptosis. In vivo depletion of ALKBH5 abolished the upregulation of HMGB1-mediated STING signaling and decreased liver inflammation, which was consistent with STING-/- mice treated with irradiation. Notably, YTHDF2 (m6A reader protein) directly bound to HMGB1 m6A-modified sites and promoted its degradation.ALKBH5-dependent HMGB1 expression mediates STING-interferon regulatory factor 3 innate immune response in RILD.
科研通智能强力驱动
Strongly Powered by AbleSci AI