Data-driven based machine learning models for predicting the deliverability of underground natural gas storage in salt caverns

支持向量机 机器学习 人工神经网络 人工智能 预测建模 天然气储存 计算机科学 随机森林 领域(数学) 工程类 数据挖掘 天然气 数学 纯数学 废物管理
作者
Aliyuda Ali
出处
期刊:Energy [Elsevier BV]
卷期号:229: 120648-120648 被引量:38
标识
DOI:10.1016/j.energy.2021.120648
摘要

This paper proposes a collection of novel deliverability prediction models for underground natural gas storage (UNGS) in salt caverns based on machine learning algorithms. Considering that the natural gas supply chain is characterized by imbalances between demand and supply on a timely basis, effective and fast models for predicting the deliverability of UNGS would not only be a valuable tool to various stakeholders but also, of great benefit in competitive natural gas marketplace. In this paper, a first step in applying machine learning algorithms to predict the deliverability of UNGS in salt caverns is proposed. To achieve this, the capability of three machine learning algorithms namely, artificial neural network (ANN), support vector machine (SVM), and Random Forest (RF) are examined. The predictive capabilities of these methods were investigated using different monthly field storage data samples for different years with varied data samples of 36 active UNGS in salt caverns in the United States. Experimental results reveal that the machine learning models developed in this study can serve as suitable tools for predicting the deliverability of UNGS in salt caverns with different performances. Overall result shows that RF model exhibits better prediction performance with varied data partitions over ANN and SVM models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今天也不想搬砖完成签到,获得积分10
1秒前
Arosy完成签到,获得积分10
1秒前
Hello应助AJTY采纳,获得10
1秒前
llllllll发布了新的文献求助10
1秒前
Okayoooooo发布了新的文献求助10
1秒前
张必雨发布了新的文献求助10
2秒前
Jewl发布了新的文献求助20
2秒前
bin发布了新的文献求助20
2秒前
科研通AI5应助典雅碧空采纳,获得30
3秒前
3秒前
3秒前
Zero_榊啸号完成签到,获得积分10
4秒前
Carina_S完成签到,获得积分20
4秒前
4秒前
yunwen发布了新的文献求助10
4秒前
111完成签到,获得积分10
4秒前
甜蜜微笑发布了新的文献求助10
4秒前
Alicexpp发布了新的文献求助10
5秒前
冯冯发布了新的文献求助10
5秒前
5秒前
6秒前
科研通AI5应助彳亍采纳,获得10
7秒前
wonderwall完成签到,获得积分10
7秒前
烟花应助笨笨友桃采纳,获得10
8秒前
8秒前
8秒前
隐形曼青应助刘福军采纳,获得10
8秒前
小张发布了新的文献求助10
8秒前
yanghq13完成签到,获得积分10
9秒前
珊珊4532完成签到 ,获得积分10
10秒前
Mikeww发布了新的文献求助10
10秒前
碧蓝紫山完成签到,获得积分10
10秒前
蛇虫鼠蚁应助流雲采纳,获得10
11秒前
玉汝于成发布了新的文献求助10
11秒前
学分完成签到 ,获得积分10
11秒前
花开富贵发布了新的文献求助10
12秒前
我是老大应助粽子采纳,获得10
12秒前
深情安青应助dw采纳,获得10
12秒前
dfsaf关注了科研通微信公众号
12秒前
水刊保毕业完成签到,获得积分10
12秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Understanding Interaction in the Second Language Classroom Context 300
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3809937
求助须知:如何正确求助?哪些是违规求助? 3354482
关于积分的说明 10371171
捐赠科研通 3070884
什么是DOI,文献DOI怎么找? 1686607
邀请新用户注册赠送积分活动 811030
科研通“疑难数据库(出版商)”最低求助积分说明 766484