球谐函数
标量(数学)
矢量球谐函数
还原(数学)
笛卡尔张量
笛卡尔坐标系
张量算子
张量(固有定义)
基质(化学分析)
物理
表达式(计算机科学)
自旋加权球谐函数
谐波
数学
经典力学
量子力学
张量场
张量密度
纯数学
几何学
计算机科学
广义相对论的精确解
电压
材料科学
程序设计语言
复合材料
作者
D. R. Lehman,William C. Parke
摘要
A general method for reduction of coupled spherical harmonic products is presented. When the total angular coupling is zero, the reduction leads to an explicitly real expression in the scalar products of the unit vector arguments of the spherical harmonics. For nonscalar couplings, the reduction gives Cartesian tensor forms for the spherical harmonic products; tensors built from the physical vectors in the original expression. The reduction for arbitrary couplings is given in closed form, making it amenable to symbolic manipulation on a computer. The final expressions do not depend on a special choice of coordinate axes, nor do they contain azimuthal quantum number summations, or do they have complex tensor terms for couplings to a scalar; consequently, they are easily interpretable from the properties of the physical vectors they contain.
科研通智能强力驱动
Strongly Powered by AbleSci AI