Depression and the risk of breast cancer: a meta-analysis of cohort studies.

肿瘤科 萧条(经济学) 置信区间 队列 优势比 危险系数 相对风险 癌症 比例危险模型 前瞻性队列研究 风险因素 入射(几何) 人口 低风险
作者
Huilian Sun,Xiaoxin Dong,Yingjie Cong,Yong Gan,Jian Deng,Shiyi Cao,Zu-Xun Lu
出处
期刊:Asian Pacific Journal of Cancer Prevention [West Asia Organization for Cancer Prevention]
卷期号:16 (8): 3233-3239 被引量:11
标识
DOI:10.7314/apjcp.2015.16.8.3233
摘要

Background: Whether depression causes increased risk of the development of breast cancer has long been debated. We conducted an updated meta-analysis of cohort studies to assess the association between depression and risk of breast cancer. Materials and Methods: Relevant literature was searched from Medline, Embase, Web of Science (up to April 2014) as well as manual searches of reference lists of selected publications. Cohort studies on the association between depression and breast cancer were included. Data abstraction and quality assessment were conducted independently by two authors. Random-effect model was used to compute the pooled risk estimate. Visual inspection of a funnel plot, Begg rank correlation test and Egger linear regression test were used to evaluate the publication bias. Results: We identified eleven cohort studies (182,241 participants, 2,353 cases) with a follow-up duration ranging from 5 to 38 years. The pooled adjusted RR was 1.13(95% CI: 0.94 to 1.36; I 2 =67.2%, p=0.001). The association between the risk of breast cancer and depression was consistent across subgroups. Visual inspection of funnel plot and Begg’s and Egger’s tests indicated no evidence of publication bias. Regarding limitations, a one-time assessment of depression with no measure of duration weakens the test of hypothesis. In addition, 8 different scales were used for the measurement of depression, potentially adding to the multiple conceptual problems concerned with the definition of depression. Conclusions: Available epidemiological evidence is insufficient to support a positive association between depr ession and breast cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助鲤鱼懿轩采纳,获得10
1秒前
现代的紫霜完成签到,获得积分10
1秒前
曹问芙发布了新的文献求助10
1秒前
2秒前
李健应助lixueao采纳,获得10
2秒前
yuandashazi发布了新的文献求助10
4秒前
嘻嘻发布了新的文献求助30
5秒前
思源应助wyh采纳,获得10
5秒前
李健应助开朗寇采纳,获得10
7秒前
田様应助努力上游的小卫采纳,获得10
8秒前
orixero应助读书的时候采纳,获得10
9秒前
研友_VZG7GZ应助蹦蹦采纳,获得10
10秒前
wanci应助WissF-采纳,获得10
10秒前
10秒前
Liufgui应助细心天德采纳,获得10
11秒前
鲤鱼懿轩完成签到,获得积分20
11秒前
11秒前
wangxiaobin完成签到,获得积分10
12秒前
sdniuidifod发布了新的文献求助10
12秒前
Lucas应助科研通管家采纳,获得10
13秒前
大模型应助科研通管家采纳,获得10
13秒前
13秒前
馒头应助科研通管家采纳,获得10
13秒前
14秒前
所所应助科研通管家采纳,获得10
14秒前
所所应助科研通管家采纳,获得10
14秒前
馒头应助科研通管家采纳,获得10
14秒前
Lucas应助科研通管家采纳,获得30
14秒前
情怀应助科研通管家采纳,获得10
14秒前
SciGPT应助嘻嘻采纳,获得10
15秒前
充电宝应助科研通管家采纳,获得10
15秒前
馒头应助科研通管家采纳,获得10
15秒前
yizhi应助科研通管家采纳,获得10
15秒前
彭于晏应助科研通管家采纳,获得10
15秒前
桐桐应助顺顺采纳,获得10
15秒前
waoller1发布了新的文献求助10
15秒前
17秒前
17秒前
三土有兀完成签到 ,获得积分10
17秒前
17秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4097519
求助须知:如何正确求助?哪些是违规求助? 3635198
关于积分的说明 11522765
捐赠科研通 3345399
什么是DOI,文献DOI怎么找? 1838659
邀请新用户注册赠送积分活动 906224
科研通“疑难数据库(出版商)”最低求助积分说明 823497