多项式混沌
参数化复杂度
概率逻辑
数学优化
计算机科学
多项式的
状态空间
线性二次调节器
应用数学
控制器(灌溉)
随机过程
数学
控制理论(社会学)
蒙特卡罗方法
算法
最优控制
人工智能
生物
统计
数学分析
农学
控制(管理)
作者
James Fisher,Raktim Bhattacharya
出处
期刊:American Control Conference
日期:2008-06-01
卷期号:: 95-100
被引量:22
标识
DOI:10.1109/acc.2008.4586473
摘要
In this paper we develop a novel theoretical framework for linear quadratic regulator design for linear systems with probabilistic uncertainty in the parameters. The framework is built on the generalized polynomial chaos theory, which can handle Gaussian, uniform, beta and gamma distributions. In this framework, the stochastic dynamics is transformed into deterministic dynamics in higher dimensional state space, and the controller is designed in the expanded state space. The proposed design framework results in a family of controllers, parameterized by the associated random variables. The theoretical results are applied to a controller design problem based on stochastic linear, longitudinal F16 model. The performance of the stochastic design shows excellent consistency with the results obtained from Monte-Carlo based designs, in a statistical sense.
科研通智能强力驱动
Strongly Powered by AbleSci AI