间质细胞
碱性磷酸酶
H&E染色
化学
细胞生长
骨髓
细胞周期
染色
干细胞
细胞分化
男科
细胞
分子生物学
细胞生物学
病理
生物
免疫学
酶
生物化学
医学
基因
作者
Cheng Zhong,Xin Zhang,Zheng‐Jian Xu,Rongxin He
出处
期刊:Physical therapy
[Oxford University Press]
日期:2012-05-11
卷期号:92 (9): 1208-1219
被引量:24
摘要
Background Electromagnetic fields (EMFs) used in stem-cell tissue engineering can help elucidate their biological principles. Objective The aim of this study was to investigate the effects of low-intensity EMFs on cell proliferation, differentiation, and cycle in mouse bone marrow stromal cells (BMSCs) and the in vivo effects of EMFs on BMSC. Methods Harvested BMSCs were cultured for 3 generations and divided into 4 groups. The methylthiotetrazole (MTT) assay was used to evaluate cell proliferation, and alkaline phosphatase activity was measured via a colorimetric assay on the 3rd, 7th, and 10th days. Changes in cell cycle also were analyzed on the 7th day, and bone nodule formation was analyzed on the 12th day. Additionally, the expression of the collagen I gene was examined by reverse transcription-polymerase chain reaction (RT-PCR) on the 10th day. The BMSCs of the irradiated group and the control group were transplanted into cortical bone of different mice femurs separately, with poly(lactic-co-glycolic acid) (PLGA) serving as a scaffold. After 4 and 8 weeks, bone the bone specimens of mice were sliced and stained by hematoxylin and eosin separately. Results The results showed that EMFs (0.5 mT, 50 Hz) accelerated cellular proliferation, enhanced cellular differentiation, and increased the percentage of cells in the G2/M+S (postsynthetic gap 2 period/mitotic phase + S phase) of the stimulation. The EMF-exposed groups had significantly higher collagen I messenger RNA levels than the control group. The EMF + osteogenic medium–treated group readily formed bone nodules. Hematoxylin and eosin staining showed a clear flaking of bone tissue in the irradiated group. Conclusion Irradiation of BMSCs with low-intensity EMFs (0.5 mT, 50 Hz) increased cell proliferation and induced cell differentiation. The results of this study did not establish a stricter animal model for studying osteogenesis, and only short-term results were investigated. Further study of the mechanism of EMF is needed.
科研通智能强力驱动
Strongly Powered by AbleSci AI