Application of artificial intelligence in the diagnosis and treatment of hepatocellular carcinoma: A review

肝细胞癌 医学 病理 肿瘤科 内科学
作者
Miguel Jiménez Pérez,Rocío González Grande
出处
期刊:World Journal of Gastroenterology [Baishideng Publishing Group]
卷期号:26 (37): 5617-5628 被引量:57
标识
DOI:10.3748/wjg.v26.i37.5617
摘要

Although artificial intelligence (AI) was initially developed many years ago, it has experienced spectacular advances over the last 10 years for application in the field of medicine, and is now used for diagnostic, therapeutic and prognostic purposes in almost all fields. Its application in the area of hepatology is especially relevant for the study of hepatocellular carcinoma (HCC), as this is a very common tumor, with particular radiological characteristics that allow its diagnosis without the need for a histological study. However, the interpretation and analysis of the resulting images is not always easy, in addition to which the images vary during the course of the disease, and prognosis and treatment response can be conditioned by multiple factors. The vast amount of data available lend themselves to study and analysis by AI in its various branches, such as deep-learning (DL) and machine learning (ML), which play a fundamental role in decision-making as well as overcoming the constraints involved in human evaluation. ML is a form of AI based on automated learning from a set of previously provided data and training in algorithms to organize and recognize patterns. DL is a more extensive form of learning that attempts to simulate the working of the human brain, using a lot more data and more complex algorithms. This review specifies the type of AI used by the various authors. However, well-designed prospective studies are needed in order to avoid as far as possible any bias that may later affect the interpretability of the images and thereby limit the acceptance and application of these models in clinical practice. In addition, professionals now need to understand the true usefulness of these techniques, as well as their associated strengths and limitations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yyyy发布了新的文献求助30
刚刚
刚刚
springlover完成签到,获得积分0
1秒前
2秒前
yuyu发布了新的文献求助10
2秒前
Totoro应助饱满酸奶采纳,获得10
2秒前
3秒前
打打应助咕噜咕噜采纳,获得10
3秒前
Szdx发布了新的文献求助10
4秒前
科目三应助内向南风采纳,获得10
4秒前
4秒前
笑笑完成签到,获得积分10
4秒前
王崇然发布了新的文献求助10
7秒前
zho发布了新的文献求助10
7秒前
9秒前
张聪发布了新的文献求助10
9秒前
小孙发布了新的文献求助20
9秒前
dio发布了新的文献求助10
9秒前
youyouyou完成签到,获得积分20
11秒前
jason完成签到,获得积分10
12秒前
归去来兮辞完成签到,获得积分10
12秒前
12秒前
直率的皮带完成签到,获得积分10
13秒前
yyyy完成签到,获得积分20
17秒前
17秒前
Szdx完成签到,获得积分20
17秒前
17秒前
Yang完成签到,获得积分10
18秒前
19秒前
一一应助王羊补牢采纳,获得10
20秒前
柒柒完成签到,获得积分10
20秒前
dio发布了新的文献求助10
21秒前
yao完成签到,获得积分10
22秒前
李环宇发布了新的文献求助10
23秒前
95发布了新的文献求助10
23秒前
23秒前
Xzmmmm完成签到,获得积分10
23秒前
24秒前
111发布了新的文献求助10
25秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
科学教育中的科学本质 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806767
求助须知:如何正确求助?哪些是违规求助? 3351517
关于积分的说明 10354367
捐赠科研通 3067322
什么是DOI,文献DOI怎么找? 1684457
邀请新用户注册赠送积分活动 809699
科研通“疑难数据库(出版商)”最低求助积分说明 765606