Three Dimensional Electromagnetic and NVH Analyses of Electric Motor Eccentricity to Enhance NVH Robustness for Hybrid and Electric Vehicles

噪音、振动和粗糙度 稳健性(进化) 电动机 汽车工程 声学 计算机科学 振动 工程类 电气工程 物理 生物化学 基因 化学
作者
Song He,Peng Zhang,Michael Gandham,Bill Omell,Timothy Grewe,John Miller,Gautam GSJ
出处
期刊:SAE technical paper series 卷期号:1 被引量:17
标识
DOI:10.4271/2020-01-0412
摘要

<div class="section abstract"><div class="htmlview paragraph">Electric motor whine is one of the main noise sources of hybrid and electric vehicles. Motor air gap eccentricity due to propulsion system deflection, part tolerances and manufacturing variation is typically ignored in motor NVH design and analysis. Such eccentricity can be a dominant noise source by amplifying critical motor whine orders up to 10 dB, leading to poor NVH robustness. However, this problem cannot be explained by conventional method based on symmetric 2D approach. New 3D electromagnetic (EM) and NVH analyses are developed and validated to accurately predict air gap induced motor noise to enhance NVH robustness: First, a true 3D full 360-degree electric motor model is developed to model asymmetric air gap distribution along motor stack length. Predicted 3D EM forces are mapped to mechanical finite-element mesh over the cylindrical stator surface. Furthermore, an enhanced 2.5D method is also developed that captures EM force variation along motor axial stack length, which offers reasonable accuracy and reduced computational costs. Statistical analysis is performed to predict probability of motor air gap distribution considering tolerance stack and manufacturing variation. Motor shaft bending and housing deformation induced air gap eccentricities are also analyzed to select optimal structure design that offers enhanced NVH robustness. The integrated 3D EM and NVH analyses successfully root caused and resolved eccentricity induced noise issues in a production hybrid electric vehicle (2-mode hybrid) and are used to enhance NVH robustness of General Motors’ hybrid and electric vehicles.</div></div>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
weilanhaian给weilanhaian的求助进行了留言
刚刚
cyxismintgreen完成签到,获得积分10
刚刚
3秒前
半青一江完成签到 ,获得积分10
3秒前
4秒前
ly666完成签到,获得积分10
4秒前
威武好吐司完成签到,获得积分10
5秒前
Jasper应助夏小舟采纳,获得10
5秒前
5秒前
6秒前
15884134873发布了新的文献求助10
8秒前
10秒前
11秒前
俏皮的戎完成签到,获得积分10
11秒前
16秒前
读书高完成签到,获得积分10
16秒前
17秒前
vincy完成签到 ,获得积分0
18秒前
18秒前
19秒前
orixero应助科研通管家采纳,获得10
19秒前
星辰大海应助科研通管家采纳,获得10
20秒前
科研通AI6应助科研通管家采纳,获得10
20秒前
英俊的铭应助科研通管家采纳,获得10
20秒前
浮游应助科研通管家采纳,获得10
20秒前
胡三岁应助科研通管家采纳,获得10
20秒前
赘婿应助科研通管家采纳,获得10
20秒前
嘿嘿应助科研通管家采纳,获得10
20秒前
领导范儿应助科研通管家采纳,获得10
20秒前
CipherSage应助科研通管家采纳,获得10
20秒前
赘婿应助科研通管家采纳,获得10
21秒前
汉堡包应助科研通管家采纳,获得10
21秒前
FashionBoy应助科研通管家采纳,获得10
21秒前
别急完成签到 ,获得积分10
21秒前
浮游应助科研通管家采纳,获得10
21秒前
21秒前
21秒前
丘比特应助科研通管家采纳,获得20
21秒前
脑洞疼应助科研通管家采纳,获得10
21秒前
所所应助科研通管家采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5299249
求助须知:如何正确求助?哪些是违规求助? 4447475
关于积分的说明 13842802
捐赠科研通 4333098
什么是DOI,文献DOI怎么找? 2378518
邀请新用户注册赠送积分活动 1373819
关于科研通互助平台的介绍 1339343