Association of a Reproducible Epigenetic Risk Profile for Schizophrenia With Brain Methylation and Function

表观遗传学 精神分裂症(面向对象编程) DNA甲基化 背外侧前额叶皮质 神经影像学 双相情感障碍 前额叶皮质 医学 心理学 肿瘤科 临床心理学 精神科 生物信息学 内科学 遗传学 认知 生物 基因 基因表达
作者
Junfang Chen,Zhenxiang Zang,Urs Braun,Kristina Schwarz,Anais Harneit,Thomas Kremer,Ren Ma,Janina I. Schweiger,Carolin Moessnang,Lena S. Geiger,Han Cao,Franziska Degenhardt,Markus M. Nöthen,Heike Tost,Andreas Meyer‐Lindenberg,Emanuel Schwarz
出处
期刊:JAMA Psychiatry [American Medical Association]
卷期号:77 (6): 628-628 被引量:57
标识
DOI:10.1001/jamapsychiatry.2019.4792
摘要

Importance

Schizophrenia is a severe mental disorder in which epigenetic mechanisms may contribute to illness risk. Epigenetic profiles can be derived from blood cells, but to our knowledge, it is unknown whether these predict established brain alterations associated with schizophrenia.

Objective

To identify an epigenetic signature (quantified as polymethylation score [PMS]) of schizophrenia using machine learning applied to genome-wide blood DNA-methylation data; evaluate whether differences in blood-derived PMS are mirrored in data from postmortem brain samples; test whether the PMS is associated with alterations of dorsolateral prefrontal cortex hippocampal (DLPFC-HC) connectivity during working memory in healthy controls (HC); explore the association between interactions between polygenic and epigenetic risk with DLPFC-HC connectivity; and test the specificity of the signature compared with other serious psychiatric disorders.

Design, Setting, and Participants

In this case-control study conducted from 2008 to 2018 in sites in Germany, the United Kingdom, the United States, and Australia, blood DNA-methylation data from 2230 whole-blood samples from 6 independent cohorts comprising HC (1238 [55.5%]) and participants with schizophrenia (803 [36.0%]), bipolar disorder (39 [1.7%]), major depressive disorder 35 [1.6%]), and autism (27 [1.2%]), and first-degree relatives of all patient groups (88 [3.9%]) were analyzed. DNA-methylation data were further explored from 244 postmortem DLPFC samples from 136 HC and 108 patients with schizophrenia. Neuroimaging and genome-wide association data were available for 393 HC. The latter data was used to calculate a polygenic risk score (PRS) for schizophrenia. The data were analyzed in 2019.

Main Outcomes and Measures

The accuracy of schizophrenia control classification based on machine learning using epigenetic data; association of schizophrenia PMS scores with DLPFC-HC connectivity; and association of the interaction between PRS and PMS with DLPFC-HC connectivity.

Results

This study included 7488 participants (4395 men [58.7%]), of whom 3158 (2230 men [70.6%]) received a diagnosis of schizophrenia. The PMS signature was associated with schizophrenia across 3 independent data sets (area under the curve [AUC] from 0.69 to 0.78;Pvalue from 0.049 to 1.24 × 10−7) and data from postmortem DLPFC samples (AUC = 0.63;P = 1.42 × 10−4), but not with major depressive disorder (AUC = 0.51;P = .16), autism (AUC = 0.53;P = .66), or bipolar disorder (AUC = 0.58;P = .21). Pathways contributing most to the classification included synaptic processes. Healthy controls with schizophrenia-like PMS showed significantly altered DLPFC-HC connectivity (validation methylation/magnetic resonance imaging,t < −3.81;P for familywise error, <.04; validation magnetic resonance imaging,t < −3.54;P for familywise error, <.02), mirroring the lack of functional decoupling in schizophrenia. There was no significant association of the interaction between PMS and PRS with DLPFC-HC connectivity (P > .19).

Conclusions and Relevance

We identified a reproducible blood DNA-methylation signature specific for schizophrenia that was correlated with altered functional DLPFC-HC coupling during working memory and mapped to methylation differences found in DLPFC postmortem samples. This indicates a possible epigenetic contribution to a schizophrenia intermediate phenotype and suggests that PMS could be of interest to be studied in the context of multimodal biomarkers for disease stratification and treatment personalization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
queen发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
热心怀蕊关注了科研通微信公众号
4秒前
刘俊完成签到,获得积分10
4秒前
dz发布了新的文献求助10
5秒前
5秒前
简单的笑蓝完成签到 ,获得积分10
6秒前
慕青应助沁钦采纳,获得10
8秒前
9秒前
9秒前
娜娜完成签到 ,获得积分20
9秒前
和光同尘完成签到,获得积分20
9秒前
111发布了新的文献求助10
10秒前
hbpu230701完成签到,获得积分0
11秒前
帆帆完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
复杂的鸿发布了新的文献求助10
13秒前
彩色靖儿完成签到 ,获得积分10
14秒前
Winfrednano完成签到,获得积分10
15秒前
姜姜发布了新的文献求助20
16秒前
16秒前
16秒前
17秒前
17秒前
17秒前
18秒前
yejian完成签到,获得积分10
20秒前
21秒前
不配.应助BulePie采纳,获得50
21秒前
Marciu33发布了新的文献求助10
21秒前
尼莫发布了新的文献求助10
21秒前
21秒前
白巾完成签到,获得积分10
22秒前
好好学习完成签到 ,获得积分10
22秒前
高高菠萝发布了新的文献求助10
22秒前
哟252发布了新的文献求助10
23秒前
23秒前
CipherSage应助Accepted采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
Bulletin de la Societe Chimique de France 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4277925
求助须知:如何正确求助?哪些是违规求助? 3806447
关于积分的说明 11926310
捐赠科研通 3453318
什么是DOI,文献DOI怎么找? 1893962
邀请新用户注册赠送积分活动 943829
科研通“疑难数据库(出版商)”最低求助积分说明 847673