已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

NOGEA: Network-Oriented Gene Entropy Approach for Dissecting Disease Comorbidity and Drug Repositioning

相互作用体 疾病 计算生物学 基因 药物重新定位 药品 生物 生物信息学 计算机科学 医学 遗传学 药理学 病理
作者
Zihu Guo,Yingxue Fu,Chao Huang,Chunli Zheng,Ziyin Wu,Xuetong Chen,Shuo Gao,Yaohua Ma,Mohamed Shahen,Yan Li,Pengfei Tu,Jingbo Zhu,Zhenzhong Wang,Wei Xiao,Yonghua Wang
标识
DOI:10.1101/2020.04.01.019901
摘要

Abstract Rapid development of high-throughput technologies has permitted the identification of an increasing number of disease-associated genes (DAGs), which are important for understanding disease initiation and developing precision therapeutics. However, DAGs often contain large amounts of redundant or false positive information, leading to difficulties in quantifying and prioritizing potential relationships between these DAGs and human diseases. In this study, a network-oriented gene entropy approach (NOGEA) is proposed for accurately inferring master genes that contribute to specific diseases by quantitatively calculating their perturbation abilities on directed disease-specific gene networks. In addition, we confirmed that the master genes identified by NOGEA have a high reliability for predicting disease-specific initiation events and progression risk. Master genes may also be used to extract the underlying information of different diseases, thus revealing mechanisms of disease comorbidity. More importantly, approved therapeutic targets are topologically localized in a small neighborhood of master genes on the interactome network, which provides a new way for predicting new drug-disease associations. Through this method, 11 old drugs were newly identified and predicted to be effective for treating pancreatic cancer and then validated by in vitro experiments. Collectively, the NOGEA was useful for identifying master genes that control disease initiation and co-occurrence, thus providing a valuable strategy for drug efficacy screening and repositioning. NOGEA codes are publicly available at https://github.com/guozihuaa/NOGEA .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ffff完成签到 ,获得积分10
刚刚
1秒前
汉堡包应助zhoutong采纳,获得10
7秒前
然463完成签到 ,获得积分10
8秒前
慈祥的花生完成签到,获得积分20
10秒前
11秒前
Docgyj完成签到 ,获得积分0
15秒前
慌慌完成签到 ,获得积分10
15秒前
树123发布了新的文献求助10
16秒前
zhoutong完成签到,获得积分20
18秒前
xxw完成签到,获得积分10
20秒前
无花果应助小葵狗采纳,获得10
22秒前
22秒前
香蕉觅云应助大佬咩咩我采纳,获得10
23秒前
27秒前
林利芳完成签到 ,获得积分0
28秒前
甘草三七完成签到,获得积分10
30秒前
魔幻的访云完成签到 ,获得积分10
32秒前
毓雅完成签到,获得积分10
33秒前
Maryamgvl完成签到,获得积分10
34秒前
汉堡包应助科研通管家采纳,获得10
35秒前
脑洞疼应助科研通管家采纳,获得10
35秒前
CAOHOU应助科研通管家采纳,获得10
35秒前
35秒前
CAOHOU应助科研通管家采纳,获得10
35秒前
大胆的小懒猪完成签到 ,获得积分10
36秒前
pinecone发布了新的文献求助10
39秒前
白金之星完成签到 ,获得积分10
40秒前
handong完成签到,获得积分20
41秒前
42秒前
handong发布了新的文献求助10
44秒前
妖九笙完成签到 ,获得积分10
48秒前
滴滴滴完成签到 ,获得积分10
49秒前
49秒前
msk完成签到 ,获得积分10
52秒前
llllll完成签到,获得积分10
54秒前
充电宝应助一只羊咩咩采纳,获得10
58秒前
Dd18753801528完成签到,获得积分10
1分钟前
1分钟前
佳芸完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
PSMA-Guided Metastasis-Directed Therapy for Oligometastatic Renal Cell Carcinoma: The Proof-of-Concept PEDESTAL Study 400
The Start of the Start: Entrepreneurial Opportunity Identification and Evaluation 400
Simulation of High-NA EUV Lithography 400
Metals, Minerals, and Society 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4303123
求助须知:如何正确求助?哪些是违规求助? 3826812
关于积分的说明 11979138
捐赠科研通 3467621
什么是DOI,文献DOI怎么找? 1901920
邀请新用户注册赠送积分活动 949583
科研通“疑难数据库(出版商)”最低求助积分说明 851619