清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Prediction of thermally induced failure for electronic equipment based on an artificial olfactory system

电子鼻 电子元件 数码产品 电子设备 热的 计算机科学 电子系统 主成分分析 微型计算机 材料科学 人工智能 机械工程 电气工程 电子工程 计算机硬件 工程类 电信 物理 气象学 炸薯条
作者
Denglong Ma,Yuan Liu,Liangtian Zheng,Jianmin Gao,Zhiyong Gao,Zaoxiao Zhang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:32 (3): 035103-035103 被引量:3
标识
DOI:10.1088/1361-6501/abc9fa
摘要

Abstract The failure of electronic equipment causes serious consequences and even catastrophic fires. Abnormal thermal signals are one of the main characteristics of the failure of electronic equipment. Thus, a new method for recognizing and predicting the thermally induced failure states of electronic equipment was proposed, based on an artificial olfactory system (AOS). The AOS recognizes the state of the volatile components released during the early stages of thermally induced failure and uses it to predict the state of health of the electronic equipment. Some typical electronic devices, such as microcomputer units, electronic rectifiers, transformers, and battery modules, were tested with the AOS to recognize the failures indicated by abnormal thermal accumulation. Compared with infrared thermal imagers and gas analyzers, the PEN3 electronic nose was utilized to monitor the status of the devices under different thermal failure scenarios. It was found that infrared thermal imaging was only able to monitor the local surface temperature, and the air temperature in the device chamber changed slowly with the surface temperature of the electronic modules. However, the AOS was able to detect the abnormal change in the whole chamber. Linear discriminant analysis (LDA) and principal component analysis (PCA) were then adopted to investigate the features of thermally induced failure for different thermal states. The results showed that the models obtained both from LDA and PCA were able to distinguish the different states of the electronic devices. Furthermore, a support vector machine model was built, based on the AOS data, to recognize and predict the thermally induced failure processes. All the failure states of the electronic devices caused by thermal simulations were recognized successfully and the prediction accuracy was above 95%. Hence, the experimental results of this research proved that using the AOS, it is feasible to predict the thermally induced failure states of electronic equipment, and the failure of electronic devices can be forecast in advance, before the obvious temperature rise and smoke release. Moreover, the method proposed in this research can also be applied to the prediction of, and warning about, electrical fires, indoor fires, and other thermally induced accidents.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
就晚安喽完成签到 ,获得积分10
刚刚
gwbk完成签到,获得积分10
3秒前
26秒前
yindi1991完成签到 ,获得积分10
26秒前
翟帅亚完成签到 ,获得积分10
35秒前
ROMANTIC完成签到 ,获得积分10
51秒前
大模型应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
Arthur完成签到 ,获得积分10
2分钟前
ZXT完成签到 ,获得积分10
2分钟前
zhuosht完成签到 ,获得积分10
2分钟前
蝎子莱莱xth完成签到,获得积分10
2分钟前
氢锂钠钾铷铯钫完成签到,获得积分10
2分钟前
mymEN完成签到 ,获得积分10
2分钟前
Square完成签到,获得积分10
2分钟前
蓝意完成签到,获得积分0
2分钟前
chichenglin完成签到 ,获得积分10
2分钟前
A,w携念e行ོ完成签到,获得积分10
2分钟前
丹妮完成签到 ,获得积分10
2分钟前
2分钟前
凉面完成签到 ,获得积分10
3分钟前
yzhilson完成签到 ,获得积分10
3分钟前
刘丰完成签到 ,获得积分10
3分钟前
孟寐以求完成签到 ,获得积分10
3分钟前
蒲蒲完成签到 ,获得积分10
3分钟前
淡然藏花完成签到 ,获得积分10
3分钟前
情怀应助科研通管家采纳,获得10
3分钟前
3分钟前
1111chen完成签到 ,获得积分10
3分钟前
MYZ完成签到,获得积分10
3分钟前
大大完成签到 ,获得积分10
3分钟前
西西完成签到,获得积分10
4分钟前
YuLu完成签到 ,获得积分10
4分钟前
4分钟前
strama完成签到,获得积分10
5分钟前
zqlxueli完成签到 ,获得积分10
5分钟前
高高的巨人完成签到 ,获得积分10
5分钟前
heija完成签到,获得积分10
5分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3840857
求助须知:如何正确求助?哪些是违规求助? 3382763
关于积分的说明 10526469
捐赠科研通 3102618
什么是DOI,文献DOI怎么找? 1708918
邀请新用户注册赠送积分活动 822781
科研通“疑难数据库(出版商)”最低求助积分说明 773622