Data based predictive models for odor perception

气味 计算机科学 感知 人工智能 机器学习 数据科学 心理学 神经科学
作者
Rinu Chacko,Deepak Jain,Manasi Patwardhan,Abhishek Puri,Shirish Karande,Beena Rai
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:10 (1) 被引量:49
标识
DOI:10.1038/s41598-020-73978-1
摘要

Machine learning and data analytics are being increasingly used for quantitative structure property relation (QSPR) applications in the chemical domain where the traditional Edisonian approach towards knowledge-discovery have not been fruitful. The perception of odorant stimuli is one such application as olfaction is the least understood among all the other senses. In this study, we employ machine learning based algorithms and data analytics to address the efficacy of using a data-driven approach to predict the perceptual attributes of an odorant namely the odorant characters (OC) of "sweet" and "musky". We first analyze a psychophysical dataset containing perceptual ratings of 55 subjects to reveal patterns in the ratings given by subjects. We then use the data to train several machine learning algorithms such as random forest, gradient boosting and support vector machine for prediction of the odor characters and report the structural features correlating well with the odor characters based on the optimal model. Furthermore, we analyze the impact of the data quality on the performance of the models by comparing the semantic descriptors generally associated with a given odorant to its perception by majority of the subjects. The study presents a methodology for developing models for odor perception and provides insights on the perception of odorants by untrained human subjects and the effect of the inherent bias in the perception data on the model performance. The models and methodology developed here could be used for predicting odor characters of new odorants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
健忘傲柏完成签到,获得积分10
刚刚
雷乾发布了新的文献求助10
2秒前
852应助肖建强采纳,获得10
5秒前
8秒前
9秒前
科研通AI5应助清爽的映真采纳,获得10
11秒前
再不洗洗睡就来不及了完成签到,获得积分10
11秒前
Amadeus发布了新的文献求助30
15秒前
不能吃太饱完成签到 ,获得积分10
16秒前
iNk应助王电催化采纳,获得10
17秒前
薇子完成签到,获得积分10
17秒前
19秒前
KKKZ完成签到,获得积分10
19秒前
Meyako应助起风了采纳,获得20
19秒前
20秒前
20秒前
xiaowei666完成签到,获得积分10
21秒前
wishes完成签到 ,获得积分10
22秒前
汪永兰完成签到,获得积分10
24秒前
25秒前
cyw9608发布了新的文献求助10
26秒前
NexusExplorer应助爱学习的YY采纳,获得10
27秒前
27秒前
兔子发布了新的文献求助10
28秒前
浩二发布了新的文献求助10
31秒前
31秒前
31秒前
赘婿应助fff采纳,获得10
33秒前
saluo发布了新的文献求助10
33秒前
意已完成签到,获得积分10
34秒前
许天菱发布了新的文献求助10
35秒前
王一帆发布了新的文献求助10
36秒前
小马甲应助Zhaoyt采纳,获得10
36秒前
38秒前
小二郎应助XYY采纳,获得10
38秒前
38秒前
LaTeXer应助99giddens采纳,获得30
38秒前
38秒前
bkagyin应助汪永兰采纳,获得10
39秒前
现实的俊驰完成签到 ,获得积分10
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 800
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Vertebrate Palaeontology, 5th Edition 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4769126
求助须知:如何正确求助?哪些是违规求助? 4105327
关于积分的说明 12699505
捐赠科研通 3823627
什么是DOI,文献DOI怎么找? 2110161
邀请新用户注册赠送积分活动 1134551
关于科研通互助平台的介绍 1015994