Feature Interaction for Streaming Feature Selection

特征(语言学) 特征选择 计算机科学 光学(聚焦) 最小冗余特征选择 人工智能 数据挖掘 模式识别(心理学) 机器学习 语言学 光学 物理 哲学
作者
Peng Zhou,Peipei Li,Shu Zhao,Xindong Wu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:32 (10): 4691-4702 被引量:76
标识
DOI:10.1109/tnnls.2020.3025922
摘要

Traditional feature selection methods assume that all data instances and features are known before learning. However, it is not the case in many real-world applications that we are more likely faced with data streams or feature streams or both. Feature streams are defined as features that flow in one by one over time, whereas the number of training examples remains fixed. Existing streaming feature selection methods focus on removing irrelevant and redundant features and selecting the most relevant features, but they ignore the interaction between features. A feature might have little correlation with the target concept by itself, but, when it is combined with some other features, they can be strongly correlated with the target concept. In other words, the interactive features contribute to the target concept as an integer greater than the sum of individuals. Nevertheless, most of the existing streaming feature selection methods treat features individually, but it is necessary to consider the interaction between features. In this article, we focus on the problem of feature interaction in feature streams and propose a new streaming feature selection method that can select features to interact with each other, named Streaming Feature Selection considering Feature Interaction (SFS-FI). With the formal definition of feature interaction, we design a new metric named interaction gain that can measure the interaction degree between the new arriving feature and the selected feature subset. Besides, we analyzed and demonstrated the relationship between feature relevance and feature interaction. Extensive experiments conducted on 14 real-world microarray data sets indicate the efficiency of our new method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
琪琪鱼发布了新的文献求助10
1秒前
1秒前
1秒前
黎莉莉完成签到,获得积分10
2秒前
叶叶叶完成签到,获得积分10
2秒前
2秒前
目分发布了新的文献求助10
4秒前
5秒前
7秒前
Beck完成签到,获得积分10
7秒前
8秒前
隐形访冬完成签到,获得积分10
10秒前
小蘑菇应助h7nho采纳,获得10
11秒前
13秒前
可爱的函函应助目分采纳,获得10
13秒前
星辰大海应助狂野忆文采纳,获得10
13秒前
万能图书馆应助狂野忆文采纳,获得10
13秒前
孙燕应助狂野忆文采纳,获得10
13秒前
孙燕应助狂野忆文采纳,获得10
13秒前
孙燕应助狂野忆文采纳,获得10
13秒前
孙燕应助狂野忆文采纳,获得10
13秒前
孙燕应助狂野忆文采纳,获得10
14秒前
川农辅导员完成签到,获得积分10
14秒前
15秒前
泡泡甜筒完成签到,获得积分10
17秒前
19秒前
北彧发布了新的文献求助10
21秒前
HarryChan应助科研通管家采纳,获得10
22秒前
NexusExplorer应助科研通管家采纳,获得10
22秒前
孙福禄应助科研通管家采纳,获得10
22秒前
Akim应助科研通管家采纳,获得10
22秒前
英俊的铭应助科研通管家采纳,获得10
22秒前
彭于晏应助科研通管家采纳,获得10
22秒前
LaTeXer应助科研通管家采纳,获得60
22秒前
孙福禄应助科研通管家采纳,获得10
22秒前
FashionBoy应助科研通管家采纳,获得10
22秒前
iNk应助科研通管家采纳,获得20
23秒前
23秒前
fffzy完成签到,获得积分10
23秒前
共享精神应助科研通管家采纳,获得10
23秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4003489
求助须知:如何正确求助?哪些是违规求助? 3542879
关于积分的说明 11285633
捐赠科研通 3279997
什么是DOI,文献DOI怎么找? 1808826
邀请新用户注册赠送积分活动 884971
科研通“疑难数据库(出版商)”最低求助积分说明 810568