Development and validation of two artificial intelligence models for diagnosing benign, pigmented facial skin lesions

卷积神经网络 人工智能 深度学习 计算机科学 残差神经网络 试验装置 模式识别(心理学) 皮肤损伤 色素沉着 人工神经网络 皮肤病科 集合(抽象数据类型) 医学 程序设计语言
作者
Yin Yang,Yiping Ge,Lifang Guo,Qiuju Wu,Peng Lin,Mengli Zhang,Junxiang Xie,Yong Li,Tong Lin
出处
期刊:Skin Research and Technology [Wiley]
卷期号:27 (1): 74-79 被引量:36
标识
DOI:10.1111/srt.12911
摘要

Abstract Objective This study used deep learning for diagnosing common, benign hyperpigmentation. Method In this study, two convolutional neural networks were used to identify six pigmentary diseases, and a disease diagnosis model was established. Because the distribution of lesions in the original training picture is very complex, we cropped the image around the lesions, trained the network on the extracted lesion images, and fused the verification results of the overall picture and the extracted picture to assess the model performance in identifying hyperpigmented dermatitis pictures. Finally, we evaluated the image recognition performance of the two convolutional neural networks and the converged networks in the test set through a comparison of the converged network and the physicians’ assessments. Results The AUC of DenseNet‐96 for the overall picture was 0.98, whereas the AUC of ResNet‐152 was 0.96; therefore, we concluded that DenseNet‐96 performed better than ResNet‐152. From the AUC, the converged network has the best performance. The converged network model achieved a comprehensive classification performance comparable to that of the doctors. Conclusions The diagnostic model for benign, pigmented skin lesions based on convolutional neural networks had a slightly higher overall performance than the skin specialists.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助鑫xx采纳,获得10
刚刚
1秒前
2秒前
3秒前
jie发布了新的文献求助10
3秒前
领导范儿应助大碗宽面采纳,获得10
3秒前
LV发布了新的文献求助10
4秒前
RenatoCai完成签到 ,获得积分10
4秒前
金虎发布了新的文献求助10
5秒前
5秒前
5秒前
li发布了新的文献求助10
5秒前
脑洞疼应助小卡拉米采纳,获得10
6秒前
xdd完成签到,获得积分20
6秒前
6秒前
7秒前
8秒前
8秒前
Zmy关闭了Zmy文献求助
8秒前
9秒前
齐天大圣完成签到,获得积分10
9秒前
9秒前
莎莎薯条发布了新的文献求助10
9秒前
9秒前
10秒前
Vlory发布了新的文献求助10
10秒前
Carl发布了新的文献求助10
11秒前
lizhiqian2024发布了新的文献求助10
11秒前
d22110652完成签到,获得积分10
11秒前
接q辣舞完成签到,获得积分10
12秒前
bkagyin应助开心小蜜蜂采纳,获得10
12秒前
郭二发布了新的文献求助10
13秒前
山上桃花酿完成签到 ,获得积分10
14秒前
未央歌完成签到 ,获得积分10
14秒前
xdd发布了新的文献求助10
14秒前
哦哦哦发布了新的文献求助10
15秒前
16秒前
莎莎薯条完成签到,获得积分10
16秒前
大碗宽面发布了新的文献求助10
16秒前
17秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790732
求助须知:如何正确求助?哪些是违规求助? 3335665
关于积分的说明 10275882
捐赠科研通 3052153
什么是DOI,文献DOI怎么找? 1675026
邀请新用户注册赠送积分活动 803023
科研通“疑难数据库(出版商)”最低求助积分说明 761007