方位(导航)
人工神经网络
对偶(语法数字)
振动
工程类
趋同(经济学)
人工智能
控制理论(社会学)
系列(地层学)
支持向量机
计算机科学
声学
古生物学
艺术
经济
文学类
物理
控制(管理)
生物
经济增长
作者
Yi Qin,Dingliang Chen,Sheng Xiang,Caichao Zhu
标识
DOI:10.1109/tii.2020.2999442
摘要
In the mechatronic system, rolling bearing is a frequently used mechanical part, and its failure may result in serious accident and major economic loss. Therefore, the remaining useful life (RUL) prediction of rolling bearing is greatly indispensable. To accurately predict the RUL of the rolling bearing, a new kind of gated recurrent unit neural network with dual attention gates, namely, gated dual attention unit (GDAU), is proposed. With the acquired life-cycle vibration data of a rolling bearing, a series of root mean squares at different time instants are calculated as the health indicator (HI) vector. Next, the to-be HI sequence is predicted by GDAU according to the existing HI vector, and then the RUL of the rolling bearing is estimated. The experimental results show that the proposed GDAU can effectively predict the RULs of rolling bearings, and it has higher prediction accuracy and convergence speed than the conventional prediction methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI