双金属
材料科学
纳米线
贵金属
氧化物
热液循环
纳米颗粒
乙二醇
双金属片
纳米结构
纳米棒
肖特基势垒
纳米技术
化学工程
光电子学
金属
冶金
二极管
工程类
作者
Shah Zeb,Xiujing Peng,Yushu Shi,Jianhui Su,Junhua Sun,Miaomiao Zhang,Guoxin Sun,Yong Nie,Yu Cui,Xuchuan Jiang
标识
DOI:10.1016/j.snb.2021.129584
摘要
Abstract This study has developed a simple but effective synthesis method to deposit bimetal Au-Pd nanoparticles onto WO3 hierarchical bundle nanowires through an in-situ redox reaction in a reducing aqueous medium. Hydrothermal method was used for the synthesis of WO3 hierarchical bundles ultrathin nanowire subunits, and the mechanisms controlling the segregation behavior and growth based on Na2SO4, citric acid, and ethylene glycol are discussed. It was found that the Pd-WO3 and/or Au-Pd-WO3 nanocomposites decorated with Au 2.4 wt% and Pd 0.48 wt% showed exemplary sensitivity (S) for 50 ppm n-butanol as S = 91 at 200 °C, approximately 14 and 1.4 times better than pristine WO3 (S = 5.7) and Pd-WO3 (S = 59), respectively. Moreover, the Pd-WO3 sensing results demonstrated that the Pd decoration could significantly reduce the operating temperature, similarly to the Au-Pd-WO3 sensor, which is particularly effective for n-butanol gas among common volatile organic compounds (VOCs). The analysis demonstrates that the bimetal Au-Pd decoration have resulted a synergistic effect in boosting the sensitivity of the WO3-based sensor toward n-butanol gas. The underlying sensing mechanism of such an Au-Pd-WO3 hybrid nanostructure is further discussed, based on chemical and electronic sensitizations in promoting the spillover of oxygen species and rectifying Schottky barriers at the interface of noble metal(s) and semiconductor oxide (e.g., WO3). This work may be beneficial for designing a unique Au-Pd-WO3 sensor with great potential to develop oxide-based sensors for detecting other hazardous gases at low temperature.
科研通智能强力驱动
Strongly Powered by AbleSci AI