Test-time Adaptation for Real-World Video Adverse Weather Restoration with Meta Batch Normalization

计算机科学 规范化(社会学) 恶劣天气 机器学习 适应性 极端天气 人工智能 薄雾 水准点(测量) 气候变化 气象学 生态学 大地测量学 地理 物理 社会学 人类学 生物
作者
Jinliang Liu,Zongxin Yang
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tcsvt.2025.3526998
摘要

Adverse weather conditions like rain, fog snow reduce visibility and degrade image quality, challenging the reliability of outdoor vision systems. Previous research mainly focuses on network models tailored to specific adverse weather conditions, limiting their effectiveness in addressing diverse weather scenarios in video processing. Recent research focuses on unified models for weather removal, significantly improving video quality in adverse conditions. However, the performance of these methods notably deteriorates in real environments due to the domain gap between synthetic and actual environments. In this paper, we present a meta-learning framework featuring a self-supervised learning (SSL) branch, aimed at boosting adaptability. In particular, we employ a two-stage training process. Initially, Joint training is implemented to establish a comprehensive model for weather reconstruction. Following this, Meta-BN training is applied to fine-tune the affine coefficients of the Batch Normalization (BN) layers, thus enabling the model to quickly adjust to different weather scenarios and maintain its efficacy in reconstruction. Moreover, an SSL-driven update strategy bolsters this targeted optimization, facilitating Test-time Weather Adaptation (TT-WA) and ensuring effective generalization to unfamiliar weather conditions. Experimental results across multiple benchmark datasets demonstrate that TT-WA consistently achieves state-of-the-art (SOTA) performance in both qualitative and quantitative evaluations under a variety of weather conditions, including rain, haze, and snow, outperforming existing methods. More critically, our approach exhibits robust adaptive reconstruction capabilities when applied to unseen real-world videos, further underscoring its effectiveness in generalizing to diverse and complex weather scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
小白发布了新的文献求助10
1秒前
1秒前
唐琪完成签到,获得积分20
2秒前
852应助熙若白采纳,获得10
2秒前
简择两发布了新的文献求助10
2秒前
一心扑在搞学术完成签到,获得积分10
3秒前
3秒前
无奈芮完成签到,获得积分10
4秒前
慕容采文完成签到,获得积分10
5秒前
夏花_秋叶发布了新的文献求助10
5秒前
5秒前
NexusExplorer应助WQ采纳,获得10
5秒前
zyc1111111发布了新的文献求助20
6秒前
淡dan发布了新的文献求助10
6秒前
6秒前
愤怒的西红柿完成签到,获得积分10
8秒前
是小尚啊发布了新的文献求助10
8秒前
9秒前
何处逢完成签到,获得积分10
9秒前
9秒前
BWJ关注了科研通微信公众号
9秒前
风清扬发布了新的文献求助10
10秒前
10秒前
wade发布了新的文献求助10
10秒前
mmddlj完成签到 ,获得积分10
11秒前
木叶_卡卡西完成签到,获得积分10
11秒前
11秒前
12秒前
fmd123完成签到,获得积分10
12秒前
李健应助畅快代柔采纳,获得10
13秒前
17381362015完成签到,获得积分10
13秒前
漂亮送终完成签到,获得积分10
13秒前
heoeh发布了新的文献求助10
13秒前
熙若白完成签到,获得积分10
14秒前
14秒前
酷波er应助wanwei采纳,获得20
15秒前
zhenjl完成签到,获得积分10
15秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Learning to Listen, Listening to Learn 570
The Psychology of Advertising (5th edition) 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3872661
求助须知:如何正确求助?哪些是违规求助? 3414996
关于积分的说明 10692089
捐赠科研通 3139209
什么是DOI,文献DOI怎么找? 1732028
邀请新用户注册赠送积分活动 835227
科研通“疑难数据库(出版商)”最低求助积分说明 781751