数学
班级(哲学)
算法
数学优化
域代数上的
应用数学
牙石(牙科)
纯数学
计算机科学
人工智能
医学
牙科
标识
DOI:10.1287/moor.2023.0202
摘要
We investigate a class of composite nonconvex functions, where the outer function is the sum of univariate extended-real-valued convex functions and the inner function is the limit of difference-of-convex functions. A notable feature of this class is that the inner function may fail to be locally Lipschitz continuous. It covers a range of important, yet challenging, applications, including inverse optimal value optimization and problems under value-at-risk constraints. We propose an asymptotic decomposition of the composite function that guarantees epi-convergence to the original function, leading to necessary optimality conditions for the corresponding minimization problem. The proposed decomposition also enables us to design a numerical algorithm such that any accumulation point of the generated sequence, if it exists, satisfies the newly introduced optimality conditions. These results expand on the study of so-called amenable functions introduced by Poliquin and Rockafellar in 1992, which are compositions of convex functions with smooth maps, and the prox-linear methods for their minimization. To demonstrate that our algorithmic framework is practically implementable, we further present verifiable termination criteria and preliminary numerical results. Funding: Financial support from the National Science Foundation Division of Computing and Communication Foundations [Grant CCF-2416172] and Division of Mathematical Sciences [Grant DMS-2416250] and the National Cancer Institute, National Institutes of Health [Grant 1R01CA287413-01] is gratefully acknowledged.
科研通智能强力驱动
Strongly Powered by AbleSci AI