Radiomics based on dual‐layer spectral detector CT for predicting EGFR mutation status in non‐small cell lung cancer

列线图 医学 无线电技术 肺癌 接收机工作特性 肿瘤科 放射科 内科学
作者
Dan Jin,Xiaoqiong Ni,Y. Tan,Hongkun Yin,Guohua Fan
出处
期刊:Journal of Applied Clinical Medical Physics [Wiley]
标识
DOI:10.1002/acm2.14616
摘要

Abstract Objective To explore the value of dual‐layer spectral computed tomography (DLCT)‐based radiomics for predicting epidermal growth factor receptor (EGFR) mutation status in patients with non‐small cell lung cancer (NSCLC). Methods DLCT images and clinical information from 115 patients with NSCLC were collected retrospectively and randomly assigned to a training group ( n = 81) and a validation group ( n = 34). A radiomics model was constructed based on the DLCT radiomic features by least absolute shrinkage and selection operator (LASSO) dimensionality reduction. A clinical model based on clinical and CT features was established. A nomogram was built combining the radiomic scores (Radscores) and clinical factors. Receiver operating characteristic (ROC) analysis and decision curve analysis (DCA) were used for the efficacy and clinical value of the models assessment. Results A total of six radiomic features and two clinical features were screened for modeling. The AUCs of the radiomic model, clinical model, and nomogram were 0.909, 0.797, and 0.922, respectively, in the training group and 0.874, 0.691, and 0.881, respectively, in the validation group. The AUCs of the nomogram and the radiomics model were significantly higher than that of the clinical model, but no significant difference was found between them. DCA revealed that nomogram had the greatest clinical benefit at most threshold intervals. Conclusion Nomogram integrating clinical factors and pretreatment DLCT radiomic features can help evaluate the EGFR mutation status of patients with NSCLC in a noninvasive way.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
5秒前
我来试试水完成签到 ,获得积分10
6秒前
6秒前
9秒前
1234发布了新的文献求助10
10秒前
mmyhn应助杨甜心采纳,获得20
13秒前
蒲公英完成签到 ,获得积分10
13秒前
科目三应助Li采纳,获得10
13秒前
Koko发布了新的文献求助10
16秒前
20秒前
20秒前
SCI完成签到,获得积分10
20秒前
研友_VZG7GZ应助[刘小婷]采纳,获得30
21秒前
归尘应助铠甲勇士采纳,获得10
21秒前
liuyi818发布了新的文献求助10
21秒前
月yue完成签到,获得积分10
21秒前
tsntn完成签到,获得积分10
22秒前
JamesPei应助默默忆山采纳,获得10
26秒前
科研通AI5应助大水采纳,获得10
26秒前
玩儿发布了新的文献求助10
26秒前
27秒前
杨甜心完成签到,获得积分10
27秒前
28秒前
black_cavalry完成签到,获得积分10
28秒前
希望天下0贩的0应助asteru采纳,获得10
30秒前
冰魂应助不止夏天采纳,获得10
30秒前
31秒前
丘比特应助心脏沾鲜血采纳,获得10
31秒前
Hyy完成签到 ,获得积分10
31秒前
虚幻青曼发布了新的文献求助10
32秒前
桐桐应助玩儿采纳,获得10
33秒前
墨白白完成签到,获得积分10
34秒前
ASDS发布了新的文献求助10
34秒前
归尘应助铠甲勇士采纳,获得10
34秒前
神内打工人完成签到 ,获得积分10
34秒前
37秒前
38秒前
40秒前
虚幻青曼完成签到,获得积分20
41秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
基于CZT探测器的128通道能量时间前端读出ASIC设计 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777347
求助须知:如何正确求助?哪些是违规求助? 3322741
关于积分的说明 10211312
捐赠科研通 3038069
什么是DOI,文献DOI怎么找? 1667051
邀请新用户注册赠送积分活动 797952
科研通“疑难数据库(出版商)”最低求助积分说明 758098