亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Enhancing medical vision-language contrastive learning via inter-matching relation modelling

关系(数据库) 计算机科学 匹配(统计) 人工智能 计算机视觉 自然语言处理 医学影像学 数学 数据挖掘 统计
作者
Mingjian Li,Mingyuan Meng,Michael Fulham,Dagan Feng,Lei Bi,Jinman Kim
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:2
标识
DOI:10.1109/tmi.2025.3534436
摘要

Medical image representations can be learned through medical vision-language contrastive learning (mVLCL) where medical imaging reports are used as weak supervision through image-text alignment. These learned image representations can be transferred to and benefit various downstream medical vision tasks such as disease classification and segmentation. Recent mVLCL methods attempt to align image sub-regions and the report keywords as local-matchings. However, these methods aggregate all local-matchings via simple pooling operations while ignoring the inherent relations between them. These methods therefore fail to reason between local-matchings that are semantically related, e.g., local-matchings that correspond to the disease word and the location word (semantic-relations), and also fail to differentiate such clinically important local-matchings from others that correspond to less meaningful words, e.g., conjunction words (importance-relations). Hence, we propose a mVLCL method that models the inter-matching relations between local-matchings via a relation-enhanced contrastive learning framework (RECLF). In RECLF, we introduce a semantic-relation reasoning module (SRM) and an importance-relation reasoning module (IRM) to enable more fine-grained report supervision for image representation learning. We evaluated our method using six public benchmark datasets on four downstream tasks, including segmentation, zero-shot classification, linear classification, and cross-modal retrieval. Our results demonstrated the superiority of our RECLF over the state-of-the-art mVLCL methods with consistent improvements across single-modal and cross-modal tasks. These results suggest that our RECLF, by modelling the inter-matching relations, can learn improved medical image representations with better generalization capabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
thangxtz完成签到,获得积分10
9秒前
Li完成签到,获得积分10
13秒前
20秒前
量子星尘发布了新的文献求助10
24秒前
57秒前
归尘应助多边棱采纳,获得10
1分钟前
1分钟前
nibaba发布了新的文献求助10
1分钟前
1分钟前
1分钟前
你香发布了新的文献求助10
1分钟前
NexusExplorer应助nibaba采纳,获得10
1分钟前
wwdd完成签到,获得积分10
1分钟前
慕青应助多边棱采纳,获得10
1分钟前
2分钟前
乐乐应助子木李采纳,获得10
2分钟前
2分钟前
一声空完成签到,获得积分10
2分钟前
奈思完成签到 ,获得积分10
2分钟前
2分钟前
GCD发布了新的文献求助10
2分钟前
3分钟前
GCD完成签到,获得积分10
3分钟前
3分钟前
多边棱发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助20
3分钟前
starry完成签到 ,获得积分10
3分钟前
3分钟前
子木李发布了新的文献求助10
4分钟前
感性的芹菜完成签到,获得积分10
4分钟前
科研通AI5应助矢思然采纳,获得10
4分钟前
廖梦琪完成签到 ,获得积分10
4分钟前
直率的笑翠完成签到 ,获得积分10
4分钟前
nibaba完成签到,获得积分10
5分钟前
5分钟前
5分钟前
彭于晏应助多边棱采纳,获得10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
矢思然发布了新的文献求助10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4653451
求助须知:如何正确求助?哪些是违规求助? 4039954
关于积分的说明 12494608
捐赠科研通 3730780
什么是DOI,文献DOI怎么找? 2059293
邀请新用户注册赠送积分活动 1089966
科研通“疑难数据库(出版商)”最低求助积分说明 971077