Artificial Intelligence Model for Detection of Colorectal Cancer on Routine Abdominopelvic CT Examinations: A Training and External-Testing Study

医学 结直肠癌 癌症检测 放射科 医学物理学 结肠镜检查 癌症 内科学
作者
Seung‐seob Kim,Hyunseok Seo,Kihwan Choi,Sung‐Won Kim,Kyunghwa Han,Yeun‐Yoon Kim,Nieun Seo,Jae Bock Chung,Joon Seok Lim
出处
期刊:American Journal of Roentgenology [American Roentgen Ray Society]
卷期号:224 (4): e2432396-e2432396 被引量:4
标识
DOI:10.2214/ajr.24.32396
摘要

BACKGROUND. Radiologists are prone to missing some colorectal cancers (CRCs) on routine abdominopelvic CT examinations that are in fact detectable on the images. OBJECTIVE. The purpose of this study was to develop an artificial intelligence (AI) model to detect CRC on routine abdominopelvic CT examinations performed without bowel preparation. METHODS. This retrospective study included 3945 patients (2275 men, 1670 women; mean age, 62 years): a training set of 2662 patients from Severance Hospital with CRC who underwent routine contrast-enhanced abdominopelvic CT before treatment between January 2010 and December 2014 and internal (841 patients from Severance Hospital) and external (442 patients from Gangnam Severance Hospital) test sets of patients who underwent routine contrast-enhanced abdominopelvic CT for any indication and colonoscopy within a 2-month interval between January 2018 and June 2018. A radiologist, accessing colonoscopy reports, determined which CRCs were visible on CT and placed bounding boxes around lesions on all slices showing CRC, serving as the reference standard. A contemporary transformer-based object detection network was adapted and trained to create an AI model (https://github.com/boktae7/colorectaltumor) to automatically detect CT-visible CRC on unprocessed DICOM slices. AI performance was evaluated using alternative free-response ROC analysis, per-lesion sensitivity, and per-patient specificity; performance in the external test set was compared with that of two radiologist readers. Clinical radiology reports were also reviewed. RESULTS. In the internal (93 CT-visible CRCs in 92 patients) and external (26 CT-visible CRCs in 26 patients) test sets, AI had AUC of 0.867 and 0.808, sensitivity of 79.6% and 80.8%, and specificity of 91.2% and 90.9%, respectively. In the external test set, the two radiologists had sensitivities of 73.1% and 80.8% (p = .74 and p > .99 vs AI) and specificities of 98.3% and 98.6% (both p < .001 vs AI); AI correctly detected five of nine CRCs missed by at least one reader. The clinical radiology reports raised suspicion for 75.9% of CRCs in the external test set. CONCLUSION. The findings show the AI model's utility for automated detection of CRC on routine abdominopelvic CT examinations. CLINICAL IMPACT. The AI model could help reduce the frequency of missed CRCs on routine examinations performed for reasons unrelated to CRC detection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
changzm发布了新的文献求助10
1秒前
2秒前
二三发布了新的文献求助10
2秒前
3秒前
3秒前
LIUJIE发布了新的文献求助10
3秒前
Lucas应助散步的小鸽子采纳,获得10
3秒前
明理芷天关注了科研通微信公众号
4秒前
斯文败类应助知行者采纳,获得10
4秒前
4秒前
123zyx完成签到,获得积分10
5秒前
小周小周完成签到,获得积分10
5秒前
Ava应助一壶古酒采纳,获得20
5秒前
5秒前
bkagyin应助病毒遗传学采纳,获得10
7秒前
ZCR完成签到,获得积分10
7秒前
粘豆包发布了新的文献求助10
7秒前
海岸发布了新的文献求助10
7秒前
8秒前
徐家小乐完成签到,获得积分10
8秒前
9秒前
10秒前
黄cc发布了新的文献求助100
10秒前
f冯完成签到,获得积分10
11秒前
感动鞋垫发布了新的文献求助10
12秒前
英俊的铭应助changzm采纳,获得10
12秒前
Hwenjing完成签到,获得积分10
13秒前
gloval完成签到,获得积分10
13秒前
所所应助小维采纳,获得10
15秒前
彭于晏应助海岸采纳,获得10
15秒前
15秒前
由由完成签到,获得积分10
15秒前
15秒前
明理芷天发布了新的文献求助10
15秒前
SciGPT应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
FashionBoy应助科研通管家采纳,获得10
15秒前
15秒前
情怀应助科研通管家采纳,获得10
16秒前
Jasper应助科研通管家采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5264297
求助须知:如何正确求助?哪些是违规求助? 4424541
关于积分的说明 13773360
捐赠科研通 4299650
什么是DOI,文献DOI怎么找? 2359230
邀请新用户注册赠送积分活动 1355402
关于科研通互助平台的介绍 1316750