Artificial Intelligence Model for Detection of Colorectal Cancer on Routine Abdominopelvic CT Examinations: A Training and External-Testing Study

医学 结直肠癌 癌症检测 放射科 医学物理学 结肠镜检查 癌症 内科学
作者
Seung‐seob Kim,Hyunseok Seo,Kihwan Choi,Sung‐Won Kim,Kyunghwa Han,Yeun‐Yoon Kim,Nieun Seo,Jae Bock Chung,Joon Seok Lim
出处
期刊:American Journal of Roentgenology [American Roentgen Ray Society]
标识
DOI:10.2214/ajr.24.32396
摘要

Background: Radiologists are prone to missing some colorectal cancers (CRCs) on routine abdominopelvic CT examinations that are in fact detectable on the images. Objective: To develop an artificial intelligence (AI) model to detect CRC on routine abdominopelvic CT examinations, performed without bowel preparation. Methods: This retrospective study included 3945 patients (2275 men, 1670 women; mean age, 62 years): a training set of 2662 patients from Severance Hospital with CRC who underwent routine contrast-enhanced abdominopelvic CT before treatment between January 2010 and December 2014; and internal (841 patients from Severance Hospital) and external (442 patients from Gangnam Severance Hospital) test sets of patients who underwent routine contrast-enhanced abdominopelvic CT for any indication and colonoscopy within a 2-month interval between January 2018 and June 2018. A radiologist, accessing colonoscopy reports, determined which CRCs were visible on CT and placed bounding boxes around lesions on all slices showing CRC, serving as the reference standard. A contemporary transformer-based object detection network was adapted and trained to create an AI model (https://github.com/boktae7/colorectaltumor) to automatically detect CT-visible CRC on unprocessed DICOM slices. AI performance was evaluated using alternative free-response ROC analysis, per-lesion sensitivity, and per-patient specificity; performance in the external test set was compared to that of two radiologist readers. Clinical radiology reports were also reviewed. Results: In the internal (93 CT-visible CRCs in 92 patients) and external (26 CT-visible CRCs in 26 patients) test sets, AI had AUC of 0.867 and 0.808, sensitivity of 79.6% and 80.8%, and specificity of 91.2% and 90.9%, respectively. In the external test set, the two radiologists had sensitivities of 73.1% and 80.8% (p=.74 and p>.99 vs AI) and specificities of 98.3% and 98.6% (both p<.001 vs AI); AI correctly detected five of nine CRCs missed by at least one reader. The clinical radiology reports raised suspicion for 75.9% of CRCs in the external test set. Conclusion: The findings demonstrate the AI model's utility for automated detection of CRC on routine abdominopelvic CT examinations. Clinical Impact: The AI model could help reduce the frequency of missed CRCs on routine examinations performed for reasons unrelated to CRC detection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wjx完成签到 ,获得积分10
3秒前
哇哇哇发布了新的文献求助10
8秒前
paper reader完成签到,获得积分0
10秒前
btcat完成签到,获得积分10
13秒前
千帆破浪完成签到 ,获得积分10
20秒前
甜乎贝贝完成签到 ,获得积分10
22秒前
土豆晴完成签到 ,获得积分10
24秒前
mrwang完成签到 ,获得积分10
25秒前
Tsui应助无奈的小松鼠采纳,获得10
27秒前
八分饱应助无奈的小松鼠采纳,获得10
27秒前
27秒前
八分饱应助无奈的小松鼠采纳,获得10
27秒前
八分饱应助无奈的小松鼠采纳,获得10
27秒前
八分饱应助无奈的小松鼠采纳,获得10
27秒前
27秒前
27秒前
八分饱应助无奈的小松鼠采纳,获得10
27秒前
八分饱应助无奈的小松鼠采纳,获得10
27秒前
licheng完成签到,获得积分10
38秒前
40秒前
特别圆的正方形完成签到 ,获得积分10
43秒前
king完成签到 ,获得积分10
45秒前
玖月完成签到 ,获得积分10
47秒前
隐形的非笑完成签到 ,获得积分10
47秒前
an完成签到,获得积分10
50秒前
情怀应助超帅的龙猫采纳,获得10
52秒前
超级灰狼完成签到 ,获得积分10
54秒前
moon完成签到 ,获得积分10
58秒前
壮观的海豚完成签到 ,获得积分10
59秒前
八分饱应助无奈的小松鼠采纳,获得10
1分钟前
1分钟前
八分饱应助无奈的小松鼠采纳,获得10
1分钟前
1分钟前
八分饱应助无奈的小松鼠采纳,获得10
1分钟前
八分饱应助无奈的小松鼠采纳,获得10
1分钟前
八分饱应助无奈的小松鼠采纳,获得10
1分钟前
1分钟前
1分钟前
23应助无奈的小松鼠采纳,获得30
1分钟前
wyh295352318完成签到 ,获得积分10
1分钟前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Robot-supported joining of reinforcement textiles with one-sided sewing heads 580
Apiaceae Himalayenses. 2 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4092137
求助须知:如何正确求助?哪些是违规求助? 3630863
关于积分的说明 11507751
捐赠科研通 3341979
什么是DOI,文献DOI怎么找? 1836948
邀请新用户注册赠送积分活动 904840
科研通“疑难数据库(出版商)”最低求助积分说明 822585