A Hierarchical Feature Extraction and Multimodal Deep Feature Integration-Based Model for Autism Spectrum Disorder Identification

特征提取 计算机科学 特征(语言学) 鉴定(生物学) 人工智能 自闭症谱系障碍 自闭症 模式识别(心理学) 医学 语言学 植物 生物 精神科 哲学
作者
Jingjing Gao,Sutao Song
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:2
标识
DOI:10.1109/jbhi.2025.3540894
摘要

Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder, and precise prediction using imaging or other biological information is of great significance. However, predicting ASD in individuals presents the following challenges: first, there is extensive heterogeneity among subjects; second, existing models fail to fully utilize rs-fMRI and non-imaging information, resulting in less accurate classification results. Therefore, this paper proposes a novel framework, named HE-MF, which consists of a Hierarchical Feature Extraction Module and a Multimodal Deep Feature Integration Module. The Hierarchical Feature Extraction Module aims to achieve multi-level, fine-grained feature extraction and enhance the model's discriminative ability by progressively extracting the most discriminative functional connectivity features at both the intra-group and overall subject levels. The Multimodal Deep Integration Module extracts common and distinctive features based on rs-fMRI and non-imaging information through two separate channels, and utilizes an attention mechanism for dynamic weight allocation, thereby achieving deep feature fusion and significantly improving the model's predictive performance. Experimental results on the ABIDE public dataset show that the HE-MF model achieves an accuracy of 95.17% in the ASD identification task, significantly outperforming existing state-of-the-art methods, demonstrating its effectiveness and superiority. To verify the model's generalization capability, we successfully applied it to relevant tasks in the ADNI dataset, further demonstrating the HE-MF model's outstanding performance in feature learning and generalization capabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朴实的飞机完成签到 ,获得积分10
2秒前
元就发布了新的文献求助10
3秒前
鸡鱼蚝发布了新的文献求助10
3秒前
务实的芒果完成签到,获得积分10
4秒前
SciGPT应助喜悦的皮卡丘采纳,获得10
4秒前
5秒前
牛超完成签到 ,获得积分10
6秒前
英俊的铭应助王可采纳,获得10
6秒前
7秒前
SunBBQ关注了科研通微信公众号
7秒前
量子星尘发布了新的文献求助10
7秒前
刘玉梅发布了新的文献求助10
7秒前
8秒前
Criminology34应助hiipaige采纳,获得10
8秒前
8秒前
8秒前
8秒前
9秒前
9秒前
zhxi完成签到,获得积分10
9秒前
机灵的一刀完成签到 ,获得积分10
10秒前
爱科研的小杨完成签到,获得积分10
10秒前
10秒前
eva发布了新的文献求助10
10秒前
xiong发布了新的文献求助10
11秒前
12秒前
哈哈发布了新的文献求助10
12秒前
冰巧发布了新的文献求助10
13秒前
13秒前
大模型应助xw采纳,获得30
13秒前
富贵发布了新的文献求助10
13秒前
Cheng发布了新的文献求助10
14秒前
14秒前
guo发布了新的文献求助10
14秒前
starlight发布了新的文献求助10
14秒前
星辰大海应助Xantareas采纳,获得10
15秒前
15秒前
shian完成签到 ,获得积分10
15秒前
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5088159
求助须知:如何正确求助?哪些是违规求助? 4303219
关于积分的说明 13410562
捐赠科研通 4128964
什么是DOI,文献DOI怎么找? 2261077
邀请新用户注册赠送积分活动 1265222
关于科研通互助平台的介绍 1199647