CT-based radiomics: A potential indicator of KRAS mutation in pulmonary adenocarcinoma

克拉斯 无线电技术 特征选择 人工智能 医学 放射基因组学 腺癌 模式识别(心理学) 计算机科学 内科学 癌症 结直肠癌
作者
Menna Allah Mahmoud,Sijun Wu,Ruihua Su,Yuling Liufu,Yanhua Wen,Xiaohuan Pan,Yubao Guan
出处
期刊:Tumori Journal [SAGE Publishing]
被引量:1
标识
DOI:10.1177/03008916251314659
摘要

Purpose: This study aimed to validate a CT-based radiomics signature for predicting Kirsten rat sarcoma (KRAS) mutation status in lung adenocarcinoma (LADC). Materials and methods: A total of 815 LADC patients were included. Radiomics features were extracted from non-contrast-enhanced CT (NECT) and contrast-enhanced CT (CECT) images using Pyradiomics. CT-based radiomics were combined with clinical features to distinguish KRAS mutation status. Four feature selection methods and four deep learning classifiers were employed. Data was split into 70% training and 30% test sets, with SMOTE addressing imbalance in the training set. Model performance was evaluated using AUC, accuracy, precision, F1 score, and recall. Results: The analysis revealed that 10.4% of patients showed KRAS mutations. The study extracted 1061 radiomics features and combined them with 17 clinical features. After feature selection, two signatures were constructed using top 10, 20, and 50 features. The best performance was achieved using Multilayer Perceptron with 20 features. CECT, it showed 66% precision, 76% recall, 69% F1-score, 84% accuracy, and AUC of 93.3% and 87.4% for train and test sets, respectively. For NECT, accuracy was 85% and 82%, with AUC of 90.7% and 87.6% for train and test sets, respectively. Conclusions: CT-based radiomics signature is a noninvasive method that can predict KRAS mutation status of LADC when mutational profiling is unavailable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文艺寄灵发布了新的文献求助10
1秒前
真谛完成签到,获得积分10
1秒前
充电宝应助Cx330采纳,获得10
1秒前
1秒前
2秒前
nines完成签到 ,获得积分10
2秒前
谨慎蝴蝶发布了新的文献求助30
3秒前
pearlwh1227完成签到 ,获得积分10
3秒前
jingjun_Li发布了新的文献求助30
3秒前
4秒前
4秒前
4秒前
Akim应助科研通管家采纳,获得10
4秒前
yeLI应助科研通管家采纳,获得10
4秒前
超帅连虎应助科研通管家采纳,获得10
4秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
miku完成签到 ,获得积分10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
yeLI应助科研通管家采纳,获得10
4秒前
CAOHOU应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
Dravia应助科研通管家采纳,获得10
5秒前
英姑应助科研通管家采纳,获得10
5秒前
5秒前
酷波er应助科研通管家采纳,获得10
5秒前
科目三应助科研通管家采纳,获得30
5秒前
一路芬芳应助科研通管家采纳,获得10
5秒前
ED应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
6秒前
6秒前
6秒前
Yn_发布了新的文献求助10
6秒前
Shawn发布了新的文献求助10
6秒前
李健应助歌尔德蒙采纳,获得10
7秒前
冷酷瑾瑜发布了新的文献求助10
7秒前
tombo100发布了新的文献求助10
7秒前
鸭米完成签到,获得积分10
8秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
植物基因组学(第二版) 1000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4095638
求助须知:如何正确求助?哪些是违规求助? 3633697
关于积分的说明 11518153
捐赠科研通 3344425
什么是DOI,文献DOI怎么找? 1838100
邀请新用户注册赠送积分活动 905666
科研通“疑难数据库(出版商)”最低求助积分说明 823223