亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Interpretable machine learning to predict the malignancy risk of follicular thyroid neoplasms in the extremely unbalanced data: Experiences from a real-world study and literature review (Preprint)

预印本 恶性肿瘤 甲状腺 卵泡期 甲状腺肿瘤 医学 计算机科学 内科学 甲状腺癌 万维网
作者
Rui Shan,Xin Li,Jing Chen,Zheng Chen,Yuanjia Cheng,Bo Han,Run-Ze Hu,Jiu-Ping Huang,Guilan Kong,Hui Liu,Fang Mei,Shi-Bing Song,Bang-Kai Sun,Hui Tian,Yang Wang,Wu‐Cai Xiao,Xiang-Yun Yao,Jingming Ye,Bo Yu,Chunhui Yuan
出处
期刊:JMIR cancer [JMIR Publications]
标识
DOI:10.2196/66269
摘要

Diagnosing and managing follicular thyroid neoplasms (FTNs) remains a significant challenge, as the malignancy risk cannot be determined until after diagnostic surgery. We aimed to use interpretable machine learning to predict the malignancy risk of FTNs preoperatively in a real-world setting. We conducted a retrospective cohort study at the Peking University Third Hospital in Beijing, China. Patients with postoperative pathological diagnoses of follicular thyroid adenoma (FTA) or follicular thyroid carcinoma (FTC) were included, excluding those without preoperative thyroid ultrasonography. We used 22 predictors involving demographic characteristics, thyroid sonography, and hormones to train 5 machine learning models: logistic regression, least absolute shrinkage and selection operator regression, random forest, extreme gradient boosting, and support vector machine. The optimal model was selected based on discrimination, calibration, interpretability, and parsimony. To address the highly imbalanced data (FTA:FTC ratio>5:1), model discrimination was assessed using both the area under the receiver operating characteristic curve and the area under the precision-recall curve (AUPRC). To interpret the model, we used Shapley Additive Explanations values and partial dependence and individual conditional expectation plots. Additionally, a systematic review was performed to synthesize existing evidence and validate the discrimination ability of the previously developed Thyroid Imaging Reporting and Data System for Follicular Neoplasm scoring criteria to differentiate between benign and malignant FTNs using our data. The cohort included 1539 patients (mean age 47.98, SD 14.15 years; female: n=1126, 73.16%) with 1672 FTN tumors (FTA: n=1414; FTC: n=258; FTA:FTC ratio=5.5). The random forest model emerged as optimal, identifying mean thyroid-stimulating hormone (TSH) score, mean tumor diameter, mean TSH, TSH instability, and TSH measurement levels as the top 5 predictors in discriminating FTA from FTC, with the area under the receiver operating characteristic curve of 0.79 (95% CI 0.77-0.81) and AUPRC of 0.40 (95% CI 0.37-0.44). Malignancy risk increased nonlinearly with larger tumor diameters and higher TSH instability but decreased nonlinearly with higher mean TSH scores or mean TSH levels. FTCs with small sizes (mean diameter 2.88, SD 1.38 cm) were more likely to be misclassified as FTAs compared to larger ones (mean diameter 3.71, SD 1.36 cm). The systematic review of the 7 included studies revealed that (1) the FTA:FTC ratio varied from 0.6 to 4.0, lower than the natural distribution of 5.0; (2) no studies assessed prediction performance using AUPRC in unbalanced datasets; and (3) external validations of Thyroid Imaging Reporting and Data System for Follicular Neoplasm scoring criteria underperformed relative to the original study. Tumor size and TSH measurements were important in screening FTN malignancy risk preoperatively, but accurately predicting the risk of small-sized FTNs remains challenging. Future research should address the limitations posed by the extreme imbalance in FTA and FTC distributions in real-world data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
Ricardo完成签到 ,获得积分10
7秒前
科研小白发布了新的文献求助10
9秒前
Marshall完成签到 ,获得积分10
13秒前
1分钟前
1分钟前
Akim应助科研通管家采纳,获得10
1分钟前
瓦力完成签到 ,获得积分10
2分钟前
科研通AI2S应助张志伟采纳,获得10
2分钟前
2分钟前
张志伟发布了新的文献求助10
2分钟前
小二郎应助强强采纳,获得10
3分钟前
3分钟前
强强发布了新的文献求助10
3分钟前
完美世界应助科研通管家采纳,获得10
3分钟前
强强完成签到,获得积分20
3分钟前
4分钟前
发发发布了新的文献求助30
4分钟前
万能图书馆应助Nan采纳,获得10
4分钟前
白天科室黑奴and晚上实验室牛马完成签到 ,获得积分10
4分钟前
Jj7完成签到,获得积分10
4分钟前
5分钟前
Nan发布了新的文献求助10
5分钟前
大鲨鱼完成签到 ,获得积分10
5分钟前
zsmj23完成签到 ,获得积分0
6分钟前
发发完成签到,获得积分10
6分钟前
6分钟前
发发发布了新的文献求助20
6分钟前
lzw完成签到 ,获得积分10
6分钟前
yindi1991完成签到 ,获得积分10
6分钟前
Jasper应助发发采纳,获得10
7分钟前
ffff完成签到 ,获得积分10
7分钟前
默默完成签到 ,获得积分10
8分钟前
方沅完成签到,获得积分10
9分钟前
9分钟前
香蕉觅云应助Nan采纳,获得10
10分钟前
10分钟前
10分钟前
Nan发布了新的文献求助10
10分钟前
灵巧的十八完成签到 ,获得积分10
11分钟前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Effect of deresuscitation management vs. usual care on ventilator-free days in patients with abdominal septic shock 200
Erectile dysfunction From bench to bedside 200
Advanced Introduction to Behavioral Law and Economics 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3824996
求助须知:如何正确求助?哪些是违规求助? 3367330
关于积分的说明 10445211
捐赠科研通 3086687
什么是DOI,文献DOI怎么找? 1698177
邀请新用户注册赠送积分活动 816657
科研通“疑难数据库(出版商)”最低求助积分说明 769887