Classification of Asphalt Pavement Defects for Sustainable Road Development Using a Novel Hybrid Technology Based on Clustering Deep Features

沥青路面 聚类分析 沥青 可持续发展 土木工程 工程类 法律工程学 计算机科学 环境科学 建筑工程 运输工程 人工智能 材料科学 复合材料 法学 政治学
作者
Jia Liang,Qipeng Zhang,Xingyu Gu
出处
期刊:Sustainability [MDPI AG]
卷期号:16 (22): 10145-10145 被引量:3
标识
DOI:10.3390/su162210145
摘要

In the rapid development of urbanization, the sustained and healthy development of transportation infrastructure has become a widely discussed topic. The inspection and maintenance of asphalt pavements not only concern road safety and efficiency but also directly impact the rational allocation of resources and environmental sustainability. To address the challenges of modern transportation infrastructure management, this study innovatively proposes a hybrid learning model that integrates deep convolutional neural networks (DCNNs) and support vector machines (SVMs). Specifically, the model initially employs a ShuffleNet architecture to autonomously extract abstract features from various defect categories. Subsequently, the Maximum Relevance Minimum Redundancy (MRMR) method is utilized to select the top 25% of features with the highest relevance and minimal redundancy. After that, SVMs equipped with diverse kernel functions are deployed to perform training and prediction based on the selected features. The experimental results reveal that the model attains a high classification accuracy of 94.62% on a self-constructed asphalt pavement image dataset. This technology not only significantly improves the accuracy and efficiency of pavement inspection but also effectively reduces traffic congestion and incremental carbon emissions caused by pavement distress, thereby alleviating environmental burdens. It is of great significance for enhancing pavement maintenance efficiency, conserving resource consumption, mitigating environmental pollution, and promoting sustainable socio-economic development.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
活力的代桃完成签到,获得积分10
3秒前
领导范儿应助鸽子侠采纳,获得10
3秒前
酷波er应助黄婷采纳,获得10
4秒前
大模型应助吴彦祖采纳,获得10
4秒前
5秒前
LLL完成签到,获得积分10
5秒前
6秒前
环游水星完成签到,获得积分10
8秒前
9秒前
6666发布了新的文献求助10
9秒前
Vanilla完成签到 ,获得积分0
9秒前
容与发布了新的文献求助10
9秒前
LLL发布了新的文献求助10
11秒前
白华苍松发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
十四行诗发布了新的文献求助10
12秒前
沈倩怡完成签到,获得积分10
12秒前
科研通AI6应助Tuotuo采纳,获得10
13秒前
15秒前
彭洪凯完成签到,获得积分10
18秒前
18秒前
Akim应助趙途嘵生采纳,获得10
19秒前
yuchenovo发布了新的文献求助10
21秒前
FashionBoy应助彭佳丽采纳,获得10
22秒前
山260完成签到 ,获得积分10
22秒前
23秒前
25秒前
杉寒完成签到,获得积分10
26秒前
27秒前
英姑应助123采纳,获得10
27秒前
28秒前
一手灵魂完成签到,获得积分10
28秒前
29秒前
29秒前
struggling2026完成签到 ,获得积分10
30秒前
无花果应助youniverse采纳,获得10
30秒前
32秒前
32秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5537866
求助须知:如何正确求助?哪些是违规求助? 4625252
关于积分的说明 14595177
捐赠科研通 4565743
什么是DOI,文献DOI怎么找? 2502625
邀请新用户注册赠送积分活动 1481106
关于科研通互助平台的介绍 1452360