材料科学
仿射变换
变形(气象学)
原子间势
弹性能
有限应变理论
拉伤
硅
流体静力平衡
热力学
计算化学
有限元法
分子动力学
物理
量子力学
数学
复合材料
几何学
化学
内科学
医学
冶金
作者
Jan Grießer,Lucas Frérot,Jonas A. Oldenstaedt,Martin H. Müser,Lars Pastewka
标识
DOI:10.1103/physrevmaterials.7.073603
摘要
Elastic constants are among the most fundamental and important properties of solid materials, which is why they are routinely characterized in both experiments and simulations. While conceptually simple, the treatment of elastic constants is complicated by two factors not yet having been concurrently discussed: finite-strain and non-affine, internal displacements. Here, we revisit the theory behind zero-temperature, finite-strain elastic constants and extend it to explicitly consider non-affine displacements. We further present analytical expressions for second-order derivatives of the potential energy for two-body and generic many-body interatomic potentials, such as cluster and empirical bond-order potentials. Specifically, we revisit the elastic constants of silicon, silicon carbide and silicon dioxide under hydrostatic compression and dilatation. Based on existing and new results, we outline the effect of multiaxial stress states as opposed to volumetric deformation on the limits of stability of their crystalline lattices.
科研通智能强力驱动
Strongly Powered by AbleSci AI