Solidification performance improvement of phase change materials for latent heat thermal energy storage using novel branch-structured fins and nanoparticles

材料科学 潜热 热能储存 相变材料 热导率 热交换器 传热 热传导 强化传热 纳米颗粒 体积分数 复合材料 热的 对流 热力学 环形翅片 传热系数 纳米技术 物理
作者
Ji Zhang,Zhi Cao,Sheng Huang,Xiaohui Huang,Yu Han,Chuang Wen,Jens Honoré Walther,Yan Yang
出处
期刊:Applied Energy [Elsevier BV]
卷期号:342: 121158-121158 被引量:29
标识
DOI:10.1016/j.apenergy.2023.121158
摘要

In the present study, we propose the combination of novel branch-structured fins and Al2O3 nanoparticles to enhance the performance of a phase change material (PCM) during the solidification process in a triple-tube heat exchanger. The inevitable drawback of PCMs is their lower heat conductivity, which can result in a long response time during the phase change process in latent heat thermal storage systems. Therefore, any serious improvement strategy needs an optimized phase change process. A mathematical model for a two-dimensional structure composed of a PCM with paraffin RT82 and Al2O3 nanoparticles that considers the thermal conduction in metal fins, Brownian motion of nanoparticles, and natural convection in a liquid phase PCM is proposed and verified based on experimental results. The impact of various volume fractions and fin layouts on the solidification process is discussed, involving the evolution and deformation of solid–liquid interfaces and distribution of isotherms and average temperature and liquid fraction curves. The results imply that the solidification behaviour can be significantly enhanced by the application of nanoparticles and metal fins. Compared with the inherent structure of the heat exchanger, the solidification time is decreased by 8.5%, 9.3%, and 10.3% for Al2O3 nanoparticles (at 2%, 5%, and 8%, respectively) only and by 83.0%, 80.7%, 80.8%, and 82.9%, respectively, for various fin layouts only. This is attributed to increased heat transfer by thermal conduction and natural convection. It can be concluded that the impact of the use of fins is preferable compared to that for nanoparticles, and the benefit of nanoparticles is limited.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
siyan156发布了新的文献求助10
1秒前
MoMo完成签到,获得积分10
1秒前
不知道完成签到,获得积分10
1秒前
薛言发布了新的文献求助10
2秒前
Andy应助陈椅子的求学采纳,获得30
2秒前
3秒前
3秒前
nn应助zhang采纳,获得10
4秒前
ark861023完成签到,获得积分10
6秒前
非哲完成签到 ,获得积分10
7秒前
郭红燕发布了新的文献求助10
7秒前
流星雨完成签到 ,获得积分10
8秒前
Bingo完成签到,获得积分10
8秒前
YUU完成签到,获得积分10
8秒前
愉快的雍完成签到 ,获得积分10
9秒前
hi应助Bismarck采纳,获得10
9秒前
hmx完成签到,获得积分10
10秒前
zz完成签到 ,获得积分10
10秒前
hj456完成签到,获得积分10
10秒前
hj木秀于林完成签到,获得积分10
11秒前
大知闲闲完成签到 ,获得积分10
12秒前
soso完成签到,获得积分10
12秒前
时尚的菠萝完成签到,获得积分10
13秒前
JF123_完成签到 ,获得积分10
13秒前
GeoY发布了新的文献求助10
13秒前
13秒前
温柔的天奇完成签到 ,获得积分10
14秒前
lunar完成签到 ,获得积分10
14秒前
yu完成签到,获得积分10
14秒前
柏林寒冬应助稳稳采纳,获得10
15秒前
坚定青柏完成签到,获得积分20
16秒前
17秒前
科研废柴完成签到,获得积分10
17秒前
debuffv完成签到 ,获得积分10
19秒前
无辜访彤完成签到 ,获得积分10
19秒前
SciGPT应助siyan156采纳,获得10
19秒前
深呼吸完成签到,获得积分10
20秒前
doctor fighting完成签到,获得积分10
20秒前
高分子完成签到,获得积分10
20秒前
21秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4061622
求助须知:如何正确求助?哪些是违规求助? 3600241
关于积分的说明 11433048
捐赠科研通 3323802
什么是DOI,文献DOI怎么找? 1827483
邀请新用户注册赠送积分活动 897949
科研通“疑难数据库(出版商)”最低求助积分说明 818774