Optimizing tomato plant phenotyping detection: Boosting YOLOv8 architecture to tackle data complexity

Boosting(机器学习) 块(置换群论) 机器学习 人工智能 计算机科学 数据挖掘 模式识别(心理学) 数学 几何学
作者
Firozeh Solimani,Angelo Cardellicchio,Giovanni Dimauro,Angelo Petrozza,Stephan Summerer,Francesco Cellini,Vito Renò
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:218: 108728-108728 被引量:45
标识
DOI:10.1016/j.compag.2024.108728
摘要

Effective identification of tomato plant traits is crucial for timely monitoring and evaluating their growth and harvest. However, conducting stress experiments on multiple tomato genotypes introduces challenges due to the nature of the data. One of these challenges arises from an imbalanced sample distribution, potentially leading to misclassification between classes and disruptions in model recognition. This paper addresses the effect of these challenges by considering the imbalanced classes of flowers, fruits, and nodes and proposing an improved detection approach through data balancing. A novel data-balancing approach is introduced in this study to overcome the issue of imbalanced data. The proposed solution involves the implementation of a YOLOv8 deep learning model, which effectively detects flowers, fruits, and nodes in tomato plants. This model significantly enhances the ability of the algorithm to detect objects of varying sizes within complex environments. To further bolster the recognition capability of the targeted classes, the proposed model integrates a Squeeze-and-Excitation (SE) block attention module into its head architecture. This module strengthens the model recognition ability by giving increased attention to the studied classes, thereby enhancing overall detection performance. The results demonstrate that the data balancing approach successfully improves the model performance in response to the data challenges. When applying the technique of pre-training the optimal weights obtained from balanced data on imbalanced data, the SE-block module showed significant improvements in outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
江鹿柒柒完成签到,获得积分10
刚刚
hahage完成签到,获得积分10
1秒前
2秒前
LL发布了新的文献求助10
3秒前
SciGPT应助饼干肥熊采纳,获得10
4秒前
5秒前
今后应助聪明亦玉采纳,获得10
5秒前
5秒前
许家星发布了新的文献求助10
5秒前
8秒前
Tracyyu发布了新的文献求助10
9秒前
思源应助LL采纳,获得10
9秒前
10秒前
11秒前
小蘑菇应助lisa采纳,获得10
11秒前
lihua完成签到,获得积分10
11秒前
12秒前
科研通AI5应助jibo采纳,获得10
13秒前
嘀嘀哒哒发布了新的文献求助10
13秒前
高高的哈密瓜完成签到 ,获得积分10
14秒前
14秒前
Zoe完成签到,获得积分10
15秒前
15秒前
15秒前
duduguai完成签到 ,获得积分10
16秒前
小桥人独立完成签到,获得积分10
16秒前
17秒前
顾矜应助科研通管家采纳,获得10
17秒前
CodeCraft应助科研通管家采纳,获得10
17秒前
Raymond应助科研通管家采纳,获得10
17秒前
思源应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
大模型应助科研通管家采纳,获得10
17秒前
17秒前
Akim应助科研通管家采纳,获得10
17秒前
汉堡包应助科研通管家采纳,获得10
17秒前
浮游应助科研通管家采纳,获得10
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
华仔应助科研通管家采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Biodiversity Third Edition 2023 2000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 800
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Vertebrate Palaeontology, 5th Edition 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4766468
求助须知:如何正确求助?哪些是违规求助? 4104047
关于积分的说明 12696094
捐赠科研通 3821706
什么是DOI,文献DOI怎么找? 2109296
邀请新用户注册赠送积分活动 1133789
关于科研通互助平台的介绍 1014487