A hybrid deep learning approach for remaining useful life prediction of lithium-ion batteries based on discharging fragments

降级(电信) 希尔伯特-黄变换 稳健性(进化) 弹道 卷积神经网络 计算机科学 电池容量 锂离子电池 电池(电) 深度学习 算法 人工智能 化学 生物化学 物理 功率(物理) 电信 滤波器(信号处理) 量子力学 天文 计算机视觉 基因
作者
Yunpeng Liu,Bo Hou,Moin Ahmed,Zhiyu Mao,Jiangtao Feng,Zhongwei Chen
出处
期刊:Applied Energy [Elsevier BV]
卷期号:358: 122555-122555 被引量:23
标识
DOI:10.1016/j.apenergy.2023.122555
摘要

Accurate remaining useful life (RUL) estimation is crucial for the normal and safe operations of lithium-ion batteries (LIBs). Traditionally, every cycle's maximum discharging capacity should be measured and then serve as a model input to predict iteratively the degradation trajectory. Unfortunately, full discharge stages are not always present in practice. Herein, this study presents a hybrid approach consisting of signal decomposition and deep learning to overcome the above limitations. Firstly, for the collected discharging fragments, the convolutional neural networks model predicts every cycle's maximum discharging capacity which combines to form a predicted capacity degradation curve before the start point of RUL prediction. Then, via empirical mode decomposition, this curve's global degradation trend is extracted and serves as the subsequent model input. Finally, the entire degradation trajectory and RUL value could be inferred based on the well-trained gated recurrent unit-fully connected model. The superior prediction performance of the proposed method is verified on two open battery datasets. All the estimation errors can be maintained within 7.0% based on the discharging fragment of the ∼20% capacity ratio ranges from 40% to 60% of the degradation data. This result illustrates the promising accuracy and robustness of the developed LIBs RUL estimation method, especially for not full discharge process in practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
journey_qq发布了新的文献求助10
1秒前
吕豪发布了新的文献求助10
2秒前
小二郎应助suhua采纳,获得10
2秒前
3秒前
研友_Z1WrgL完成签到,获得积分10
4秒前
5秒前
科研打工人完成签到,获得积分10
6秒前
7秒前
7秒前
8秒前
tracyjbr发布了新的文献求助10
8秒前
小蘑菇应助iceice采纳,获得10
8秒前
8秒前
小乘号子发布了新的文献求助10
9秒前
科目三应助XF采纳,获得10
10秒前
开心秋白完成签到,获得积分10
10秒前
11秒前
Ukiss发布了新的文献求助10
12秒前
12秒前
13秒前
虚拟的柠檬完成签到,获得积分10
14秒前
16秒前
稳重老魏发布了新的文献求助10
16秒前
17秒前
511发布了新的文献求助10
18秒前
18秒前
领导范儿应助夺命大猩猩采纳,获得10
18秒前
丘比特应助王靓仔采纳,获得10
19秒前
zyx完成签到 ,获得积分20
19秒前
嘻嘻哈哈眼药水完成签到,获得积分20
21秒前
21秒前
最重中之重完成签到,获得积分10
23秒前
爆米花应助缓慢的思烟采纳,获得10
23秒前
24秒前
24秒前
25秒前
26秒前
27秒前
27秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Revision of the Australian Thynnidae and Tiphiidae (Hymenoptera) 500
Instant Bonding Epoxy Technology 500
Pipeline Integrity Management Under Geohazard Conditions (PIMG) 500
Methodology for the Human Sciences 500
DEALKOXYLATION OF β-CYANOPROPIONALDEYHDE DIMETHYL ACETAL 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4356186
求助须知:如何正确求助?哪些是违规求助? 3859318
关于积分的说明 12040921
捐赠科研通 3500900
什么是DOI,文献DOI怎么找? 1921317
邀请新用户注册赠送积分活动 963652
科研通“疑难数据库(出版商)”最低求助积分说明 863324