Easy-Net: A Lightweight Building Extraction Network Based on Building Features

计算机科学 萃取(化学) 人工智能 色谱法 化学
作者
Huaigang Huang,Jiabin Liu,Ruisheng Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-15 被引量:3
标识
DOI:10.1109/tgrs.2023.3348102
摘要

The efficient, accurate, and automatic extraction of buildings from remote sensing imagery is a key task in the intelligent extraction of remote sensing information owing to its importance in applications including urban planning, change detection, and unmanned aerial vehicle (UAV) navigation. However, the fast and accurate extraction of buildings from remote sensing images remains difficult owing to the complex, variable nature of geographic information, and variable external appearances of buildings. This is because many existing building extraction networks fail to incorporate building features into their design. Also, generally, simple lightweight networks do not accurately identify buildings, while large complex networks have high operational costs. Therefore, in this article, we proposed a simple, effective feature fusion strategy based on the building features extracted by the lightweight backbone network; also we have improved the feature fusion performance by combining the advantages of a convolutional neural network (CNN) and transformer; and presented the lightweight building extraction network called Easy-Net. We conducted experiments comparing Easy-Net with existing high-performing networks on the public dataset WHU and self-made datasets; results showed the efficiency and accuracy of our method in the task of building extraction from remote sensing images. Thus, Easy-Net was found to be a promising alternative to existing building extraction networks. Code has been released at: github.com/teddy132/EasyNet_for_building_extraction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
55555555发布了新的文献求助10
刚刚
Nancy完成签到 ,获得积分10
刚刚
烟花应助祝妹采纳,获得10
1秒前
眼睛大的从雪完成签到,获得积分10
1秒前
2秒前
含糊的代丝完成签到 ,获得积分10
2秒前
就是我发布了新的文献求助10
3秒前
3秒前
3秒前
快乐曼荷发布了新的文献求助10
4秒前
小巧的凌波完成签到,获得积分10
4秒前
123发布了新的文献求助10
4秒前
5秒前
6秒前
文艺稚晴完成签到 ,获得积分20
6秒前
hhllhh发布了新的文献求助10
7秒前
夏汐完成签到,获得积分10
8秒前
8秒前
搜集达人应助13633501455采纳,获得10
9秒前
日升月发布了新的文献求助10
10秒前
思源应助清漪采纳,获得10
11秒前
12秒前
可爱的函函应助气味采纳,获得10
13秒前
gt完成签到,获得积分10
13秒前
14秒前
乐乐应助逗逗采纳,获得10
15秒前
15秒前
Obbos完成签到 ,获得积分10
15秒前
16秒前
16秒前
随便打完成签到,获得积分10
16秒前
Aiden完成签到,获得积分10
16秒前
才识姐姐完成签到,获得积分10
16秒前
怦然心动发布了新的文献求助10
16秒前
井鼃完成签到,获得积分10
17秒前
finerain7发布了新的文献求助10
17秒前
dandan完成签到,获得积分20
18秒前
灰灰灰完成签到,获得积分10
18秒前
18秒前
RTP完成签到,获得积分10
18秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Encyclopedia of Geology (2nd Edition) 2000
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786796
求助须知:如何正确求助?哪些是违规求助? 3332500
关于积分的说明 10255917
捐赠科研通 3047766
什么是DOI,文献DOI怎么找? 1672704
邀请新用户注册赠送积分活动 801534
科研通“疑难数据库(出版商)”最低求助积分说明 760257