卡尔曼滤波器
乘性噪声
模棱两可
稳健性(进化)
数学
乘法函数
高斯分布
力矩(物理)
球(数学)
集合卡尔曼滤波器
控制理论(社会学)
计算机科学
算法
数学优化
扩展卡尔曼滤波器
人工智能
统计
数学分析
信号传递函数
模拟信号
控制(管理)
量子力学
物理
数字信号处理
计算机硬件
化学
生物化学
经典力学
程序设计语言
基因
作者
Xingkai Yu,Jiaojuan Wu,Dong-Jin Xin,Jianxun Li
摘要
Abstract This article proposes two robust Kalman filters to solve the issue of inaccurate modeling in multiplicative noise systems due to epistemic limitations. First, we construct all conceivable state/measurement transition probability densities as an ambiguity set. This ambiguity set chooses the Wasserstein distance or the moment‐based metric as the distance metric. Besides, this set is an inequality set with a chosen tolerance, which can be seen as a non‐negative radius ball. Then, by combining the robust solution of the least favorable model in that ball with the alternating direction method of multipliers or an efficient direct solution method, we propose two robust Kalman filters based on the minimum mean square error criterion. A classical example is provided to verify the effectiveness of the proposed robust filters in comparison to existing state‐of‐the‐art filters.
科研通智能强力驱动
Strongly Powered by AbleSci AI