亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Steel Surface Defect Detection Algorithm Based on YOLOv8

曲面(拓扑) 算法 计算机科学 材料科学 工程类 结构工程 数学 几何学
作者
Xuan Song,Shuzhen Cao,Jingwei Zhang,Zhenguo Hou
出处
期刊:Electronics [Multidisciplinary Digital Publishing Institute]
卷期号:13 (5): 988-988 被引量:22
标识
DOI:10.3390/electronics13050988
摘要

To improve the accuracy of steel surface defect detection, an improved model of multi-directional optimization based on the YOLOv8 algorithm was proposed in this study. First, we innovate the CSP Bottleneck with the two convolutions (C2F) module in YOLOv8 by introducing deformable convolution (DCN) technology to enhance the learning and expression ability of complex texture and irregular shape defect features. Secondly, the advanced Bidirectional Feature Pyramid Network (BiFPN) structure is adopted to realize the weight distribution learning of input features of different scales in the feature fusion stage, allowing for more effective integration of multi-level feature information. Next, the BiFormer attention mechanism is embedded in the backbone network, allowing the model to adaptively allocate attention based on target features, such as flexibly and efficiently skipping non-critical areas, and focusing on identifying potentially defective parts. Finally, we adjusted the loss function from Complete-Intersection over Union (CIoU) to Wise-IoUv3 (WIoUv3) and used its dynamic non-monotony focusing property to effectively solve the problem of overfitting the low quality target bounding box. The experimental results show that the mean Average Precision (mAP) of the improved model in the task of steel surface defect detection reaches 84.8%, which depicts a significant improvement of 6.9% compared with the original YOLO8 model. The improved model can quickly and accurately locate and classify all kinds of steel surface defects in practical applications and meet the needs of steel defect detection in industrial production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小北完成签到,获得积分20
2秒前
浮游应助竹伪采纳,获得10
4秒前
nihao完成签到 ,获得积分10
7秒前
要减肥书桃完成签到 ,获得积分10
9秒前
俭朴的听寒完成签到,获得积分10
11秒前
shentaii完成签到,获得积分10
16秒前
20秒前
浮游应助野猪采纳,获得10
22秒前
kendall完成签到,获得积分10
23秒前
顾矜应助赵莹静采纳,获得10
23秒前
科研通AI5应助科研通管家采纳,获得10
24秒前
黄涛涛发布了新的文献求助10
25秒前
55155255完成签到,获得积分10
26秒前
serendipity完成签到 ,获得积分10
29秒前
Anlocia完成签到 ,获得积分10
29秒前
33秒前
35秒前
DongYiFan完成签到 ,获得积分10
37秒前
赵莹静发布了新的文献求助10
38秒前
sky发布了新的文献求助30
38秒前
cyanpomelo完成签到,获得积分10
42秒前
单薄绿竹完成签到,获得积分10
47秒前
薛定谔的猫完成签到,获得积分10
51秒前
卡诺斯明完成签到 ,获得积分10
52秒前
领导范儿应助赵莹静采纳,获得10
54秒前
56秒前
王者归来完成签到,获得积分10
57秒前
fanghua发布了新的文献求助10
57秒前
1分钟前
1分钟前
碎冰蓝完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
fanghua完成签到,获得积分10
1分钟前
morena发布了新的文献求助10
1分钟前
共享精神应助唐宋八大家采纳,获得10
1分钟前
ding应助胡可采纳,获得10
1分钟前
1分钟前
残月初升完成签到,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5076910
求助须知:如何正确求助?哪些是违规求助? 4296247
关于积分的说明 13386652
捐赠科研通 4118494
什么是DOI,文献DOI怎么找? 2255341
邀请新用户注册赠送积分活动 1259818
关于科研通互助平台的介绍 1192904