清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Improved estimation of the underestimated GEDI footprint LAI in dense forests

叶面积指数 足迹 天蓬 环境科学 均方误差 激光雷达 植被(病理学) 遥感 数学 统计 地理 生态学 医学 考古 病理 生物
作者
Lijuan Liang,Rong Shang,Jing M. Chen,Mingzhu Xu,Hongda Zeng
出处
期刊:Geo-spatial Information Science [Taylor & Francis]
卷期号:: 1-16 被引量:2
标识
DOI:10.1080/10095020.2023.2286377
摘要

Light Detection and Ranging (LiDAR), with its ability to capture vegetation vertical profile, could be a unique technique for deriving Leaf Area Index (LAI). A global LAI product at 25-m spatial resolution was derived from the Global Ecosystem Dynamics Investigation (GEDI) LiDAR data since 2019, but it was often significantly underestimated in dense forests. Here we explored the potential for improving the estimation of the underestimated GEDI LAI in dense forests by using the Digital Elevation Model (DEM) as auxiliary data to separate ground and canopy returns in the received waveform. Dense forests were defined as forests with high vegetation greenness (annual maximum NDVI ≥ 0.8). The newly estimated GEDI footprint LAI was first validated with the ground-measured LAI at two sites in Fujian, China, and the results showed that the underestimation was significantly reduced compared to the original GEDI LAI product (r increased from −0.55 to 0.81, RMSE decreased from 3.94 to 1.43, Bias decreased from 3.17 to 0.48). To evaluate whether the improvement was applicable to other areas and forest types, the newly estimated GEDI footprint LAI for the entire Fujian and Contiguous US (CONUS) was then compared to the consistent LAI among three widely used global LAI products. The comparison results demonstrated that the use of DEM as auxiliary data could largely reduce the underestimation of GEDI footprint LAI (In Fujian, RMSE decreased from 4.75 to 2.52, and Bias decreased from 4.61 to 0.58; in CONUS, RMSE decreased from 5.24 to 1.96, and Bias decreased from 5.1 to 0.73). Overall, this study demonstrates the effectiveness of correcting the large underestimation of GEDI footprint LAI in dense forests by utilizing DEM, which has an important influence on the results, as auxiliary data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
2秒前
吕半鬼完成签到,获得积分0
22秒前
theo完成签到 ,获得积分10
26秒前
pK完成签到 ,获得积分10
26秒前
29秒前
波波完成签到 ,获得积分10
31秒前
努力退休小博士完成签到 ,获得积分10
33秒前
37秒前
南宫士晋完成签到 ,获得积分10
41秒前
飞云完成签到 ,获得积分10
42秒前
量子星尘发布了新的文献求助10
43秒前
充电宝应助霁昕采纳,获得10
49秒前
55秒前
量子星尘发布了新的文献求助10
1分钟前
Bethune完成签到 ,获得积分10
1分钟前
jason93完成签到 ,获得积分10
1分钟前
xiaofeixia完成签到 ,获得积分10
1分钟前
我是笨蛋完成签到 ,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
zh完成签到 ,获得积分10
1分钟前
六一完成签到 ,获得积分10
1分钟前
新奇完成签到 ,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
2分钟前
九月初五完成签到 ,获得积分10
2分钟前
Axs完成签到,获得积分10
2分钟前
2分钟前
AAA发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
霁昕发布了新的文献求助10
2分钟前
CodeCraft应助AAA采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助30
3分钟前
3分钟前
量子星尘发布了新的文献求助10
4分钟前
无悔完成签到 ,获得积分10
4分钟前
杨天天完成签到 ,获得积分10
4分钟前
个性的翠芙完成签到 ,获得积分10
4分钟前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
The Psychology of Advertising (5th edition) 500
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3865751
求助须知:如何正确求助?哪些是违规求助? 3408343
关于积分的说明 10657160
捐赠科研通 3132316
什么是DOI,文献DOI怎么找? 1727549
邀请新用户注册赠送积分活动 832351
科研通“疑难数据库(出版商)”最低求助积分说明 780242