Applications of natural language processing at emergency department triage: A narrative review

急诊分诊台 急诊科 梅德林 人工智能 医学 自然语言处理 荟萃分析 机器学习 计算机科学 斯科普斯 人口 医疗急救 内科学 精神科 法学 环境卫生 政治学
作者
Jonathon Stewart,Juan Lü,Adrian Goudie,Glenn Arendts,Shiv Meka,Sam Freeman,Katie Walker,Peter Sprivulis,Frank Sanfilippo,Mohammed Bennamoun,Girish Dwivedi
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:18 (12): e0279953-e0279953 被引量:29
标识
DOI:10.1371/journal.pone.0279953
摘要

Introduction Natural language processing (NLP) uses various computational methods to analyse and understand human language, and has been applied to data acquired at Emergency Department (ED) triage to predict various outcomes. The objective of this scoping review is to evaluate how NLP has been applied to data acquired at ED triage, assess if NLP based models outperform humans or current risk stratification techniques when predicting outcomes, and assess if incorporating free-text improve predictive performance of models when compared to predictive models that use only structured data. Methods All English language peer-reviewed research that applied an NLP technique to free-text obtained at ED triage was eligible for inclusion. We excluded studies focusing solely on disease surveillance, and studies that used information obtained after triage. We searched the electronic databases MEDLINE, Embase, Cochrane Database of Systematic Reviews, Web of Science, and Scopus for medical subject headings and text keywords related to NLP and triage. Databases were last searched on 01/01/2022. Risk of bias in studies was assessed using the Prediction model Risk of Bias Assessment Tool (PROBAST). Due to the high level of heterogeneity between studies and high risk of bias, a metanalysis was not conducted. Instead, a narrative synthesis is provided. Results In total, 3730 studies were screened, and 20 studies were included. The population size varied greatly between studies ranging from 1.8 million patients to 598 triage notes. The most common outcomes assessed were prediction of triage score, prediction of admission, and prediction of critical illness. NLP models achieved high accuracy in predicting need for admission, triage score, critical illness, and mapping free-text chief complaints to structured fields. Incorporating both structured data and free-text data improved results when compared to models that used only structured data. However, the majority of studies (80%) were assessed to have a high risk of bias, and only one study reported the deployment of an NLP model into clinical practice. Conclusion Unstructured free-text triage notes have been used by NLP models to predict clinically relevant outcomes. However, the majority of studies have a high risk of bias, most research is retrospective, and there are few examples of implementation into clinical practice. Future work is needed to prospectively assess if applying NLP to data acquired at ED triage improves ED outcomes when compared to usual clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Thi发布了新的文献求助10
3秒前
5秒前
11号迪西馅饼完成签到,获得积分10
7秒前
11秒前
Davidjin发布了新的文献求助10
11秒前
单薄映易完成签到 ,获得积分10
11秒前
cij123完成签到,获得积分10
12秒前
13秒前
橙子完成签到,获得积分10
14秒前
淡定元珊完成签到,获得积分10
15秒前
杏仁酥完成签到 ,获得积分10
16秒前
16秒前
KKKZ发布了新的文献求助10
16秒前
hovumath完成签到,获得积分10
19秒前
韩野完成签到,获得积分20
20秒前
银子吃好的完成签到,获得积分10
25秒前
zuoyou完成签到,获得积分10
27秒前
小单要站上大舞台完成签到,获得积分20
28秒前
33秒前
上官若男应助KKKZ采纳,获得10
35秒前
活力数据线完成签到,获得积分10
38秒前
111完成签到 ,获得积分10
39秒前
fatcat完成签到,获得积分10
39秒前
shuoliu完成签到 ,获得积分10
39秒前
陌上之心完成签到 ,获得积分10
40秒前
VDC应助wwl采纳,获得30
41秒前
-Me完成签到 ,获得积分10
42秒前
42秒前
43秒前
量子星尘发布了新的文献求助10
44秒前
45秒前
大方的笑萍完成签到 ,获得积分10
45秒前
水云完成签到,获得积分20
46秒前
邓洁宜完成签到,获得积分10
47秒前
Unlisted发布了新的文献求助10
50秒前
碳烤小肥肠完成签到,获得积分10
51秒前
Yulanda完成签到 ,获得积分10
51秒前
脑洞疼应助水云采纳,获得10
52秒前
瀚泛完成签到,获得积分10
54秒前
赖氨酸完成签到,获得积分10
54秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599922
求助须知:如何正确求助?哪些是违规求助? 4685747
关于积分的说明 14838974
捐赠科研通 4674097
什么是DOI,文献DOI怎么找? 2538431
邀请新用户注册赠送积分活动 1505597
关于科研通互助平台的介绍 1471086