已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Dual Consistency-Constrained Learning for Unsupervised Visible-Infrared Person Re-Identification

计算机科学 模态(人机交互) 一致性(知识库) 人工智能 特征(语言学) 身份(音乐) 特征学习 匹配(统计) 机器学习 自然语言处理 模式识别(心理学) 数学 语言学 哲学 物理 统计 声学
作者
Bin Yang,Jun Chen,Cuiqun Chen,Mang Ye
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:19: 1767-1779 被引量:6
标识
DOI:10.1109/tifs.2023.3341392
摘要

Unsupervised visible-infrared person re-identification (US-VI-ReID) aims at learning a cross-modality matching model under unsupervised conditions, which is an extremely important task for practical nighttime surveillance to retrieve a specific identity. Previous advanced US-VI-ReID works mainly focus on associating the positive cross-modality identities to optimize the feature extractor by off-line manners, inevitably resulting in error accumulation of incorrect off-line cross-modality associations in each training epoch due to the intra-modality and inter-modality discrepancies. They ignore the direct cross-modality feature interaction in the training process, i.e., the on-line representation learning and updating. Worse still, existing interaction methods are also susceptible to inter-modality differences, leading to unreliable heterogeneous neighborhood learning. To address the above issues, we propose a dual consistency-constrained learning framework (DCCL) simultaneously incorporating off-line cross-modality label refinement and on-line feature interaction learning. The basic idea is that the relations between cross-modality instance-instance and instance-identity should be consistent. More specifically, DCCL constructs an instance memory, an identity memory, and a domain memory for each modality. At the beginning of each training epoch, DCCL explores the off-line consistency of cross-modality instance-instance and instance-identity similarities to refine the reliable cross-modality identities. During the training, DCCL finds credible homogeneous and heterogeneous neighborhoods with on-line consistency between query-instance similarity and query-instance domain probability similarities for feature interaction in one batch, enhancing the robustness against intra-modality and inter-modality variations. Extensive experiments validate that our method significantly outperforms existing works, and even surpasses some supervised counterparts. The source code is available at https://github.com/yangbincv/DCCL .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Liangyong_Fu完成签到 ,获得积分10
1秒前
几两完成签到 ,获得积分10
1秒前
Evan完成签到,获得积分10
2秒前
DD完成签到,获得积分10
3秒前
人文完成签到 ,获得积分10
4秒前
4秒前
廖天佑完成签到,获得积分0
4秒前
刘玉欣完成签到 ,获得积分10
5秒前
rudjs完成签到,获得积分10
6秒前
科研通AI2S应助阿荣撒采纳,获得10
6秒前
李荷花完成签到 ,获得积分10
8秒前
bkagyin应助dffad采纳,获得10
9秒前
精明玲完成签到 ,获得积分10
9秒前
10秒前
姜茶完成签到 ,获得积分10
10秒前
YBR完成签到 ,获得积分10
10秒前
阿离完成签到,获得积分10
10秒前
keimer完成签到,获得积分10
10秒前
牛蛙丶丶完成签到,获得积分10
10秒前
兆兆完成签到 ,获得积分10
11秒前
billyzhou完成签到,获得积分10
12秒前
拓跋幻枫完成签到,获得积分10
12秒前
亓官煜之发布了新的文献求助10
13秒前
秀丽奎完成签到 ,获得积分10
13秒前
13秒前
Ray羽曦~完成签到 ,获得积分10
13秒前
小m完成签到 ,获得积分10
13秒前
zhiwei完成签到 ,获得积分10
14秒前
HUO完成签到 ,获得积分10
14秒前
郑桂庆完成签到 ,获得积分10
15秒前
tivyg'lk完成签到,获得积分10
15秒前
kk完成签到 ,获得积分10
15秒前
姆姆没买完成签到 ,获得积分10
15秒前
16秒前
Ren完成签到 ,获得积分10
16秒前
朴素飞薇完成签到 ,获得积分10
16秒前
16秒前
小凯完成签到 ,获得积分10
18秒前
吉克完成签到,获得积分10
19秒前
机灵的如柏完成签到,获得积分10
19秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815607
求助须知:如何正确求助?哪些是违规求助? 3359221
关于积分的说明 10400786
捐赠科研通 3076889
什么是DOI,文献DOI怎么找? 1690041
邀请新用户注册赠送积分活动 813613
科研通“疑难数据库(出版商)”最低求助积分说明 767674