清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Research on 3D Face Reconstruction Algorithm Based on ResNet and Transformer

计算机科学 子网 面子(社会学概念) 模式识别(心理学) 算法 像素 人工智能 面部识别系统 特征(语言学) 社会科学 社会学 语言学 哲学 计算机安全
作者
Yilihamu Yaermaimaiti,Tianxing Yan,Yuhang Zhao,Tusongjiang Kari
出处
期刊:International Journal of Computational Intelligence and Applications [Imperial College Press]
卷期号:23 (01)
标识
DOI:10.1142/s1469026823500359
摘要

In view of the problems of high production cost, scarcity and lack of diversity of 3D face datasets, this paper designs an end-to-end self-supervised learning 3D face reconstruction algorithm with a single 2D face image as input, which only uses 2D face datasets to complete model training. First, the improved ResNet module is introduced to preprocess the input face image. The deep residual neural network has strong feature extraction and characterization ability for the image, which can provide rich high-level semantic feature maps for the subsequent subnetwork. Then, add transformer module completely based on self-attention mechanism to the parameter prediction subnetwork, which can make different parameters of the subnetwork focus on self-related feature map information and avoid interference from invalid feature map information, so as to further improve the parameter prediction accuracy of the subnetwork. Next, training, ablation and comparison experiments were conducted on CelebA, BFM and Photoface datasets, and the combined function of pixel loss function and perceptual loss function was selected as the loss function. The experimental results show that: compared with the historical optimal results of the same network structure, the scale-invariant depth error (SIDE) and mean angle deviation (MAD) are improved by 5.9% and 10.8%, respectively, which strongly proves the effectiveness of the algorithm. Finally, in order to verify the actual effect of the 3D face reconstruction algorithm, examples are selected in this paper for reconstruction. The 3D faces generated by the algorithm all have a good sense of reality, which intuitively and effectively proves the advancement of the algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助聪明十三采纳,获得10
3秒前
十七完成签到 ,获得积分10
11秒前
向日葵完成签到 ,获得积分10
27秒前
39秒前
LELE完成签到 ,获得积分10
39秒前
文天发布了新的文献求助10
42秒前
wushang完成签到 ,获得积分10
49秒前
sh1ro完成签到,获得积分10
56秒前
赛韓吧完成签到 ,获得积分10
59秒前
1分钟前
1分钟前
1分钟前
annie发布了新的文献求助10
1分钟前
龙猫爱看书完成签到,获得积分10
1分钟前
小白兔完成签到 ,获得积分10
1分钟前
逆流的鱼完成签到 ,获得积分10
1分钟前
cdercder应助科研通管家采纳,获得20
1分钟前
Singularity应助科研通管家采纳,获得10
1分钟前
Singularity应助科研通管家采纳,获得10
1分钟前
Singularity应助科研通管家采纳,获得10
1分钟前
Singularity应助科研通管家采纳,获得10
1分钟前
Singularity应助科研通管家采纳,获得10
1分钟前
白昼の月完成签到 ,获得积分0
1分钟前
迈克老狼完成签到 ,获得积分10
1分钟前
牛人完成签到,获得积分0
1分钟前
1分钟前
liuliu完成签到 ,获得积分10
2分钟前
Fiona完成签到 ,获得积分10
2分钟前
2分钟前
Microbiota发布了新的文献求助10
2分钟前
2分钟前
2分钟前
乐乐应助CC采纳,获得10
2分钟前
bo完成签到 ,获得积分10
3分钟前
善学以致用应助文天采纳,获得10
3分钟前
阿德利企鹅完成签到 ,获得积分10
3分钟前
酷波er应助日暮采纳,获得10
3分钟前
huhu完成签到,获得积分10
3分钟前
曾经不言完成签到 ,获得积分10
3分钟前
Connie完成签到,获得积分10
3分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795624
求助须知:如何正确求助?哪些是违规求助? 3340665
关于积分的说明 10300948
捐赠科研通 3057168
什么是DOI,文献DOI怎么找? 1677539
邀请新用户注册赠送积分活动 805449
科研通“疑难数据库(出版商)”最低求助积分说明 762626