Considering critical building materials for embodied carbon emissions in buildings: A machine learning-based prediction model and tool

可解释性 温室气体 人工神经网络 计算机科学 环境科学 机器学习 人工智能 环境经济学 生态学 生物 经济
作者
Shu Su,Zhaoyin Zang,Jingfeng Yuan,Xinyu Pan,Ming Shan
出处
期刊:Case Studies in Construction Materials [Elsevier BV]
卷期号:20: e02887-e02887 被引量:10
标识
DOI:10.1016/j.cscm.2024.e02887
摘要

Construction activities discharge considerable carbon emissions, causing serious environmental problems and gaining increasing attention. For the large-scale construction area, high emission intensity, and significant carbon reduction potential, embodied carbon emissions of buildings worth special studying. However, previous studies are usually post-evaluation and ignore the influences of project, construction and field. This paper focuses on critical building materials and adopts machine learning methods to realize carbon prediction at design stage. The activity data, including critical building materials, water, and energy consumption are analyzed and 30 influencing factors at the project, construction, and management levels are identified. Three algorithms (artificial neural network, support vector regression and extreme gradient boosting) are used to develop machine learning models. The proposed methodology is applied to 70 projects in the Yangtze River Delta region of China. Results show that the established model achieved high interpretability (R2>0.7) and small average error (5.33%), well proving its feasibility. Furthermore, an automated tool is developed to assist practitioners to predict the critical materials consumption and embodied carbon emissions conveniently. The operable model and practical tool can efficiently predict critical material consumption and embodied carbon emissions at design stage, supporting effective adjustments and improvement to reduce carbon in construction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HiNDT发布了新的文献求助30
刚刚
科研通AI2S应助mmyhn采纳,获得10
刚刚
落霞与孤鹜齐飞完成签到,获得积分10
3秒前
科研通AI5应助动听的夏天采纳,获得20
7秒前
科研通AI2S应助SWEETYXY采纳,获得10
7秒前
tailand完成签到,获得积分20
8秒前
赘婿应助jianhua采纳,获得10
11秒前
11秒前
14秒前
16秒前
小卢卢快闭嘴完成签到,获得积分10
19秒前
wf发布了新的文献求助10
20秒前
23秒前
25秒前
斯文败类应助sxp1031采纳,获得10
26秒前
康谨发布了新的文献求助10
27秒前
Shan完成签到,获得积分10
27秒前
Owen应助wf采纳,获得10
28秒前
zyx发布了新的文献求助10
29秒前
魏海龙完成签到,获得积分10
33秒前
安静的泥猴桃完成签到,获得积分10
33秒前
万能图书馆应助tuo zhang采纳,获得10
35秒前
andy发布了新的文献求助10
37秒前
37秒前
朴素访琴完成签到 ,获得积分10
37秒前
领导范儿应助康谨采纳,获得10
39秒前
SciGPT应助眼角流星采纳,获得10
40秒前
CipherSage应助李李木子采纳,获得10
40秒前
tuo zhang完成签到,获得积分10
40秒前
41秒前
JamesPei应助展七采纳,获得10
42秒前
42秒前
桐桐应助ira采纳,获得10
44秒前
liuqiuchina完成签到,获得积分10
44秒前
45秒前
tuo zhang发布了新的文献求助10
46秒前
48秒前
49秒前
马家奇关注了科研通微信公众号
50秒前
50秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778324
求助须知:如何正确求助?哪些是违规求助? 3323927
关于积分的说明 10216572
捐赠科研通 3039206
什么是DOI,文献DOI怎么找? 1667877
邀请新用户注册赠送积分活动 798409
科研通“疑难数据库(出版商)”最低求助积分说明 758385