Prognostic Value and Pathological Correlation of Peritumoral Radiomics in Surgically Resected Non-Small Cell Lung Cancer

无线电技术 医学 病态的 肺癌 价值(数学) 放射科 病理 相关性 癌症 肿瘤科 内科学 计算机科学 几何学 数学 机器学习
作者
Masaki Tominaga,Motohiko Yamazaki,Hajime Umezu,Hideaki Sugino,Yuma Fuzawa,Takuya Yagi,Hiroyuki Ishikawa
出处
期刊:Academic Radiology [Elsevier]
卷期号:31 (9): 3801-3810 被引量:9
标识
DOI:10.1016/j.acra.2024.01.033
摘要

Rationale and Objectives To determine the additional value of peritumoral radiomics in predicting overall survival (OS) in surgically resected non-small cell lung cancer (NSCLC) and its correlation with pathological findings. Methods A total of 526 patients with surgically resected NSCLC were included (191 training, 160 internal validation, and 175 external validation cohorts). CT images were used to segment the gross tumor volume (GTV) and peritumoral volume (PTV) within distances of 3, 6, 9 mm from the tumor boundary (PTV3, PTV6, and PTV9), and radiomic features were extracted. Four prognostic models for OS (GTV, GTV + PTV3, GTV + PTV6, and GTV + PTV9) were constructed using the training cohort. The prognostic ability and feature importance were evaluated using the validation cohorts. Pathological findings were compared between the two patient groups (n = 30 for each) having the top 30 and bottom 30 values of the most important peritumoral feature. Results The GTV + PTV3 models exhibited the highest predictive ability, which was higher than that of the GTV model in the internal validation cohort (C-index: 0.666 vs. 0.616, P = 0.027) and external validation cohort (C-index: 0.705 vs. 0.656, P = 0.048). The most important feature was GLDM_Dependence_Entropy, extracted from PTV3. High peritumoral GLDM_Dependence_Entropy was associated with a high proportion of invasive histological types, tumor spread through air spaces, and tumor-infiltrating lymphocytes (all P < 0.05). Conclusion The GTV and PTV3 combination demonstrated a higher prognostic ability, compared to GTV alone. Peritumoral radiomic features may be associated with various pathological prognostic factors. To determine the additional value of peritumoral radiomics in predicting overall survival (OS) in surgically resected non-small cell lung cancer (NSCLC) and its correlation with pathological findings. A total of 526 patients with surgically resected NSCLC were included (191 training, 160 internal validation, and 175 external validation cohorts). CT images were used to segment the gross tumor volume (GTV) and peritumoral volume (PTV) within distances of 3, 6, 9 mm from the tumor boundary (PTV3, PTV6, and PTV9), and radiomic features were extracted. Four prognostic models for OS (GTV, GTV + PTV3, GTV + PTV6, and GTV + PTV9) were constructed using the training cohort. The prognostic ability and feature importance were evaluated using the validation cohorts. Pathological findings were compared between the two patient groups (n = 30 for each) having the top 30 and bottom 30 values of the most important peritumoral feature. The GTV + PTV3 models exhibited the highest predictive ability, which was higher than that of the GTV model in the internal validation cohort (C-index: 0.666 vs. 0.616, P = 0.027) and external validation cohort (C-index: 0.705 vs. 0.656, P = 0.048). The most important feature was GLDM_Dependence_Entropy, extracted from PTV3. High peritumoral GLDM_Dependence_Entropy was associated with a high proportion of invasive histological types, tumor spread through air spaces, and tumor-infiltrating lymphocytes (all P < 0.05). The GTV and PTV3 combination demonstrated a higher prognostic ability, compared to GTV alone. Peritumoral radiomic features may be associated with various pathological prognostic factors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助虚拟的凡波采纳,获得10
刚刚
Jughead发布了新的文献求助10
1秒前
完美世界应助sjc采纳,获得10
1秒前
flying蝈蝈完成签到,获得积分10
4秒前
小张关注了科研通微信公众号
4秒前
5秒前
小歘歘完成签到 ,获得积分10
5秒前
十言发布了新的文献求助10
5秒前
吴_5完成签到 ,获得积分10
6秒前
6秒前
无花果应助flying蝈蝈采纳,获得10
7秒前
安元菱完成签到 ,获得积分10
8秒前
AA简单男孩完成签到,获得积分10
8秒前
舒适的逊完成签到,获得积分10
9秒前
Bin_Liu发布了新的文献求助10
10秒前
xxh完成签到,获得积分10
11秒前
漫天发布了新的文献求助10
11秒前
夏天发布了新的文献求助10
11秒前
十言完成签到,获得积分10
13秒前
哈哈哈哈完成签到,获得积分10
13秒前
13秒前
14秒前
龚仕杰完成签到 ,获得积分10
14秒前
14秒前
zik应助小超人哈里采纳,获得10
14秒前
小明完成签到 ,获得积分10
14秒前
瘦瘦的秋柔完成签到 ,获得积分10
17秒前
红与黑完成签到,获得积分10
19秒前
19秒前
19秒前
科研狼完成签到,获得积分10
20秒前
张梓桐完成签到,获得积分10
20秒前
liqian发布了新的文献求助10
20秒前
情怀应助苏格拉底的嘲笑采纳,获得10
20秒前
柯学家完成签到 ,获得积分10
21秒前
阳光问雁发布了新的文献求助10
21秒前
21秒前
汕头凯奇完成签到,获得积分10
22秒前
24秒前
哈哈哈发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600096
求助须知:如何正确求助?哪些是违规求助? 4685809
关于积分的说明 14839646
捐赠科研通 4674865
什么是DOI,文献DOI怎么找? 2538486
邀请新用户注册赠送积分活动 1505659
关于科研通互助平台的介绍 1471109