Anchor Graph-Based Feature Selection for One-Step Multi-View Clustering

计算机科学 聚类分析 特征选择 图形 人工智能 模式识别(心理学) 数据挖掘 理论计算机科学
作者
Wenhui Zhao,Qin Li,Huafu Xu,Quanxue Gao,Qianqian Wang,Xinbo Gao
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 7413-7425 被引量:5
标识
DOI:10.1109/tmm.2024.3367605
摘要

Recently, multi-view clustering methods have been widely used in handling multi-media data and have achieved impressive performances. Among the many multi-view clustering methods, anchor graph-based multi-view clustering has been proven to be highly efficient for large-scale data processing. However, most existing anchor graph-based clustering methods necessitate post-processing to obtain clustering labels and are unable to effectively utilize the information within anchor graphs. To address this issue, we draw inspiration from regression and feature selection to propose A nchor G raph-Based F eature S election for O ne-step M ulti- V iew C lustering (AGFS-OMVC). Our method combines embedding learning and sparse constraint to perform feature selection, allowing us to remove noisy anchor points and redundant connections in the anchor graph. This results in a clean anchor graph that can be projected into the label space, enabling us to obtain clustering labels in a single step without post-processing. Lastly, we employ the tensor Schatten $p$ -norm as a tensor rank approximation function to capture the complementary information between different views, ensuring similarity between cluster assignment matrices. Experimental results on five real-world datasets demonstrate that our proposed method outperforms state-of-the-art approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助科研通管家采纳,获得10
刚刚
小墨应助科研通管家采纳,获得10
刚刚
科研助手6应助科研通管家采纳,获得10
刚刚
FashionBoy应助科研通管家采纳,获得10
刚刚
nini发布了新的文献求助10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
SYLH应助科研通管家采纳,获得20
1秒前
Leif应助科研通管家采纳,获得20
1秒前
英姑应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
打打应助科研通管家采纳,获得10
1秒前
李健应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
小墨应助科研通管家采纳,获得10
1秒前
wanci应助科研通管家采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
我是老大应助科研通管家采纳,获得10
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
科目三应助科研通管家采纳,获得10
1秒前
天天快乐应助科研通管家采纳,获得200
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
SYLH应助科研通管家采纳,获得10
2秒前
英俊的铭应助科研通管家采纳,获得30
2秒前
2秒前
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
Owen应助haiyan采纳,获得10
2秒前
火星天发布了新的文献求助10
3秒前
3秒前
科研通AI5应助ccy采纳,获得10
8秒前
cdercder应助重要的菠萝采纳,获得20
9秒前
10秒前
好运滚滚来完成签到 ,获得积分10
11秒前
陈老太完成签到 ,获得积分10
11秒前
充电宝应助我要发paper采纳,获得10
11秒前
栖迟完成签到,获得积分10
14秒前
liu完成签到,获得积分10
14秒前
15秒前
feezy完成签到,获得积分10
15秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776256
求助须知:如何正确求助?哪些是违规求助? 3321728
关于积分的说明 10207386
捐赠科研通 3036979
什么是DOI,文献DOI怎么找? 1666508
邀请新用户注册赠送积分活动 797517
科研通“疑难数据库(出版商)”最低求助积分说明 757868