Modeling gypsum (calcium sulfate dihydrate) solubility in aqueous electrolyte solutions using extreme learning machine

溶解度 石膏 极限学习机 支持向量机 多元自适应回归样条 水溶液 计算机科学 化学 线性回归 生物系统 机器学习 材料科学 贝叶斯多元线性回归 人工神经网络 生物 物理化学 有机化学 冶金
作者
Mohammad Ebrahimi,Omid Deymi,Fahimeh Hadavimoghaddam,Abdolhossein Hemmati-Sarapardeh
出处
期刊:Journal of water process engineering [Elsevier BV]
卷期号:57: 104664-104664
标识
DOI:10.1016/j.jwpe.2023.104664
摘要

Due to various operational conditions, experimental determination of gypsum solubility in water-based systems comprising multiple ionic compounds is often impractical or costly. In this regard, computer-based intelligent approaches can provide highly effective and economical alternatives. In this study, after providing a database with 2288 experimental data-points gathered from 31 various literatures, four advanced artificial intelligence techniques were developed: Adaptive Boosting-Support Vector Regression (AdaBoost-SVR), Extreme Learning Machine (ELM), Gradient Boosting-Support Vector Regression (GB-SVR), and Multivariate Adaptive Regression Splines (MARS). The aim of these techniques was to predict the gypsum solubility in aqueous electrolyte solutions as a function of the solutions' temperature and 22 distinct salts' Molal concentrations. After performing various statistical and graphical analyses, it was observed that the ELM model has a more accurate prediction capability for gypsum solubility in aqueous electrolyte solutions compared to the other three models. For this model, the highest Coefficient of Determination (R2 = 0.9926) and the lowest Root Mean Square Error (RMSE = 0.00373) were obtained. Furthermore, after conducting a sensitivity analysis to calculate the relevancy factors of the ELM model's input and output variables, the variation trend of gypsum solubility was evaluated. According to the multiple evaluations, the ELM model predictions reasonably agreed with the experimental data on gypsum solubility in the chosen solutions and temperature ranges. The ELM model can be implemented in numerical modeling frameworks for improving the treatment and reclamation operations of saline water sources, optimizing the oil and gas recovery and production processes, and controlling the complicated geotechnical issues.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
panhang完成签到,获得积分10
1秒前
领导范儿应助ji采纳,获得10
1秒前
lele发布了新的文献求助10
1秒前
健壮荠完成签到,获得积分10
2秒前
2秒前
2秒前
GAO发布了新的文献求助30
3秒前
4秒前
wangqi发布了新的文献求助10
4秒前
祁乾完成签到 ,获得积分10
4秒前
He_发布了新的文献求助10
5秒前
ZHENDINGKE发布了新的文献求助10
5秒前
Steven发布了新的文献求助10
6秒前
7秒前
8秒前
小二郎应助blingbling采纳,获得10
8秒前
liangyuting发布了新的文献求助10
9秒前
wangqi完成签到,获得积分10
10秒前
大模型应助彳亍采纳,获得10
11秒前
善学以致用应助dddd采纳,获得200
11秒前
Rondab应助细心的日记本采纳,获得10
11秒前
11秒前
12秒前
vivi完成签到,获得积分10
12秒前
zz发布了新的文献求助10
12秒前
冯玉石发布了新的文献求助10
13秒前
14秒前
zcg完成签到 ,获得积分10
14秒前
14秒前
7788999发布了新的文献求助20
15秒前
遇见完成签到,获得积分10
15秒前
调皮醉波发布了新的文献求助20
15秒前
16秒前
16秒前
16秒前
mof发布了新的文献求助10
16秒前
17秒前
wanci应助阿尔法贝塔采纳,获得10
17秒前
全脂牛奶完成签到,获得积分10
17秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4005067
求助须知:如何正确求助?哪些是违规求助? 3544878
关于积分的说明 11291856
捐赠科研通 3281289
什么是DOI,文献DOI怎么找? 1809639
邀请新用户注册赠送积分活动 885374
科研通“疑难数据库(出版商)”最低求助积分说明 810878