Modeling gypsum (calcium sulfate dihydrate) solubility in aqueous electrolyte solutions using extreme learning machine

溶解度 石膏 极限学习机 支持向量机 多元自适应回归样条 水溶液 计算机科学 化学 线性回归 生物系统 机器学习 材料科学 贝叶斯多元线性回归 人工神经网络 生物 物理化学 有机化学 冶金
作者
Mohammad Ebrahimi,Omid Deymi,Fahimeh Hadavimoghaddam,Abdolhossein Hemmati-Sarapardeh
出处
期刊:Journal of water process engineering [Elsevier]
卷期号:57: 104664-104664
标识
DOI:10.1016/j.jwpe.2023.104664
摘要

Due to various operational conditions, experimental determination of gypsum solubility in water-based systems comprising multiple ionic compounds is often impractical or costly. In this regard, computer-based intelligent approaches can provide highly effective and economical alternatives. In this study, after providing a database with 2288 experimental data-points gathered from 31 various literatures, four advanced artificial intelligence techniques were developed: Adaptive Boosting-Support Vector Regression (AdaBoost-SVR), Extreme Learning Machine (ELM), Gradient Boosting-Support Vector Regression (GB-SVR), and Multivariate Adaptive Regression Splines (MARS). The aim of these techniques was to predict the gypsum solubility in aqueous electrolyte solutions as a function of the solutions' temperature and 22 distinct salts' Molal concentrations. After performing various statistical and graphical analyses, it was observed that the ELM model has a more accurate prediction capability for gypsum solubility in aqueous electrolyte solutions compared to the other three models. For this model, the highest Coefficient of Determination (R2 = 0.9926) and the lowest Root Mean Square Error (RMSE = 0.00373) were obtained. Furthermore, after conducting a sensitivity analysis to calculate the relevancy factors of the ELM model's input and output variables, the variation trend of gypsum solubility was evaluated. According to the multiple evaluations, the ELM model predictions reasonably agreed with the experimental data on gypsum solubility in the chosen solutions and temperature ranges. The ELM model can be implemented in numerical modeling frameworks for improving the treatment and reclamation operations of saline water sources, optimizing the oil and gas recovery and production processes, and controlling the complicated geotechnical issues.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助科研通管家采纳,获得30
刚刚
crazzzzzy完成签到,获得积分10
刚刚
深情安青应助科研通管家采纳,获得10
刚刚
刚刚
111发布了新的文献求助10
刚刚
kk完成签到,获得积分10
刚刚
huhdcid发布了新的文献求助30
刚刚
Ava应助科研通管家采纳,获得10
1秒前
正直的魔镜完成签到 ,获得积分10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
小田完成签到,获得积分10
1秒前
柏林寒冬应助科研通管家采纳,获得10
1秒前
ls完成签到,获得积分10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
含蓄含烟完成签到,获得积分10
1秒前
孙皓阳发布了新的文献求助20
1秒前
1秒前
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
2秒前
森活鱼块发布了新的文献求助10
2秒前
所所应助科研通管家采纳,获得10
2秒前
积极访冬发布了新的文献求助10
2秒前
2秒前
无私砖头完成签到,获得积分10
2秒前
yang完成签到 ,获得积分10
3秒前
3秒前
珈蓝完成签到,获得积分10
3秒前
gui发布了新的文献求助10
3秒前
crazzzzzy发布了新的文献求助10
3秒前
隐形曼青应助欣喜石头采纳,获得10
4秒前
笑的得美完成签到,获得积分10
4秒前
小二郎应助蔡佩翰采纳,获得10
4秒前
4秒前
meng发布了新的文献求助10
4秒前
hala安胖胖完成签到,获得积分10
5秒前
5秒前
uu完成签到,获得积分10
5秒前
故意的青枫完成签到,获得积分10
5秒前
乐观宛海完成签到,获得积分10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5396185
求助须知:如何正确求助?哪些是违规求助? 4516552
关于积分的说明 14060143
捐赠科研通 4428500
什么是DOI,文献DOI怎么找? 2432060
邀请新用户注册赠送积分活动 1424284
关于科研通互助平台的介绍 1403563